

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	OLD 1.0a1 documentation

Online Linguistic Database (OLD) Documentation

Welcome to the documentation for the Online Linguistic Database version
1.0.

Getting Started

This section describes what the Online Linguistic Database does and how to get
and install it.

	About
	Purpose

	What is it?

	Core features

	Technologies

	Who should read this manual?

	License

	Installation & Configuration
	QuickStart

	Download

	Install

	Configure

	Setup

	Serve

	Soft dependencies

	Deploy

	Developers

Architecture

The architecture section provides details about the design of the OLD.

	Introduction

	Interface
	RESTful API

	Search

	Non-standard API

	Authentication & authorization

	Input validation

	Processing

	Data Structure
	ApplicationSettings

	Collection

	CollectionBackup

	ElicitationMethod

	File

	Form

	FormBackup

	FormSearch

	Translation

	Language

	Orthography

	Page

	Phonology

	Source

	Speaker

	SyntacticCategory

	Tag

	User

API Documentation

This section contains the API documentation automatically extracted from the
source code.

	onlinelinguisticdatabase
	config
	environment

	middleware

	routing

	controllers
	applicationsettings

	collectionbackups

	elicitationmethods

	error

	files

	formbackups

	forms

	formsearches

	languages

	login

	oldcollections

	orthographies

	pages

	phonologies

	rememberedforms

	sources

	speakers

	syntacticcategories

	tags

	users

	lib
	SQLAQueryBuilder

If you can’t find the information you’re looking for, have a look at the index
or try to find it using the search function:

	Index

	Module Index

	Search Page

 Copyright 2013, Joel Dunham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OLD 1.0a1 documentation

About

The Online Linguistic Database (OLD) is software that facilitates collaborative
storing, searching, processing and analyzing of linguistic fieldwork data.

Linguistic fieldwork stands to benefit significantly from inter-researcher
collaboration and data-sharing. The OLD arose as a response to a lack of
multi-user cross-platform tools for language documentation and analysis.

Purpose

The OLD seeks to facilitate achievement of the following objectives.

	Language data can be shared easily between researchers.

	Language data are intelligently structured (balancing an allowance for
theoretical and methodological variation with capacity for easy retrieval
and re-purposing.)

	Language data are highly searchable.

	Access to language data can be controlled via authentication and
authorization.

	Language data can be re-purposed. E.g., word list data recorded, transcribed
and analyzed by a phonetician can be used by a syntactician, anthropologist,
educator and/or community member.

	Language data are digitized and available for digital processing, e.g.,
parsing, automated information extraction, corpus analysis, comparative
cross-linguistic analysis.

What is it?

The OLD is a program for creating collaborative language documentation web
services [1]. A web service is like a web site or web application, insofar
as it runs on a web server and responds to HTTP requests. However, a web
service differs from a traditional web application in that it expects to
communicate with other programs and not, directly, with human users.

The benefit of this design strategy is that a single web service can form a
useful component of a variety of different applications with different goals.
For example, an OLD web service for language L could serve data to a mobile
application that helps users to learn L. At the same time, researchers could
be collaboratively entering, searching and processing data on the OLD web
service via a desktop application and/or a browser-based one.

The OLD will be packaged with an in-browser user-friendly application. However,
since these two applications will not be interdependent their documentation will
be kept separate also.

The OLD is intended to be set up on a web server. However, it can also easily
be installed on a personal computer for, say, developmental or experimental
purposes. For detailed installation instructions see the
Installation & Configuration section.

The OLD is, at its core, a database-driven application. It is essentially an
interface to a relational database with a specific data structure, or schema.
The schema was designed with the goals of linguistic fieldwork in mind. An OLD
web service receives input in the form of HTTP requests with parameters encoded
(usually) as JavaScript Object Notation (JSON). The application logic
authenticates and authorizes the request and then, depending on the type of
request, queries or updates the database and returns an HTTP response with JSON
in the response body. This is illustrated in the diagram below.

[image: _images/OLD_diagram_high_level.png]

Core features

	User authentication and authorization.

	Multi-user resource creation, retrieval, update and deletion (where a
“resource” is something like a linguistic form or a syntactic category).

	Input validation (e.g., ensuring that morpheme segmentation strings do not
contain characters outside of a specified phonemic inventory and set of
morpheme delimiters).

	Application-wide settings, i.e., validation settings, specifications of
inventories & orthographies, object and meta-language identification, etc.

	Data processing (e.g., copying and reduction of image and audio files,
generation of category strings based on the categories of component
morphemes, phrase-morpheme auto-linking, etc.)

	Resource search, i.e., open-ended, nested boolean search with substring,
exact and regular expression matches against specified fields.

	Linguistic analysis: phonology & corpora specification, automatic
morphological modeling and morphological parser creation, syntactic parser
specification & generation.

Technologies

The OLD is written in Python [2], using the Pylons web framework. It exposes
a RESTful API based on the Atom Publishing Protocol, as implemented by the
Routes URL routing component of Pylons. The relational database management
system (RDBMS) may be MySQL or SQLite (others are, in principle, possible also).
SQLAlchemy provides a Pythonic interface (ORM) to the RDBMS.

Who should read this manual?

This document will be of use to anyone wishing to understand the inner workings
of the OLD.

It will be useful, in particular, to system administrators who want to know how
to acquire, configure, install and serve an OLD web service.

It will also be useful to developers who would like to contribute to the code or
create user-facing applications that interact with OLD web services. Developers
will also benefit from reading the API documentation.

End users who wish to know more about the data structures of the OLD or its
linguistic analysis and language processing components will also find this
manual helpful. Typically, end users
of an OLD-based system will interact with an OLD web service not directly but
via a user interface-focused application. Such users may want to consult the
documentation for the latter application before exploring the present document.

License

The OLD is open source software licensed under
Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0.txt].

	[1]	Note that this is a break from previous versions of the OLD. In
versions 0.1 through 0.2.7, the OLD was a traditional web application, i.e.,
it served HTML pages as user interface and expected user input as HTML form
requests.

	[2]	The OLD works with Python 2.6 and 2.7 but not with Python <= 2.5. It
has not been tested with Python 3.

 Copyright 2013, Joel Dunham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OLD 1.0a1 documentation

Installation & Configuration

This section explains how to get, install and configure an OLD application. An
overview of the process:

	Download and install the OLD.

	Generate an OLD config file and edit it.

	Run the setup command to create the database tables and directory structure.

	Serve the application and test that it is working properly.

Note that these installation instructions assume a Unix-like system, e.g.,
Linux or Mac OS X. If you are using Windows [1], please refer to the Pylons
or the virtualenv documentation for instructions on how to create and activate
a Python virtual environment and install and download a Pylons application.

QuickStart

For the impatient, here is the quickest way to install, configure and serve an
OLD application. Before blindly issuing the following commands, however, it is
recommended that you read the detailed instructions in the following sections

virtualenv --no-site-packages env
source env/bin/activate
easy_install onlinelinguisticdatabase
mkdir xyzold
cd xyzold
paster make-config onlinelinguisticdatabase production.ini
paster setup-app production.ini
paster serve production.ini

Open a new terminal window and run the basic test script to ensure that the OLD
application is being served and is operating correctly:

python _requests_tests.py

You should see All requests tests passed. as output. Congratulations.

Download

Pre-packaged eggs of stable OLD releases can be downloaded from the
Python Package Index [http://pypi.python.org/pypi/onlinelinguisticdatabase].

The easiest way to get and install the OLD is via the Python command-line
program Easy Install. Before issuing the following command, read the
Create a virtual Python environment and consider installing the OLD in a virtual environment.
To download and install the OLD with Easy Install, run:

sudo easy_install onlinelinguisticdatabase

For developers, the full source code for the OLD can be found on
GitHub [https://github.com/jrwdunham/old.]. To clone the OLD repository,
first install Git [http://git-scm.com/] and then run:

git clone git://github.com/jrwdunham/old.git

See below for detailed instructions.

Install

Create a virtual Python environment

It is recommended that the OLD be installed in a virtual Python environment. A
virtual environment is an isolated Python environment within which you can
install the OLD and its dependencies without inadvertently rendering other
programs unworkable by, say, upgrading their dependencies in incompatible
ways. If you do not want to install the OLD and its dependencies in a virtual
environment, skip this section.

Use virtualenv [http://www.virtualenv.org] to create a virtual Python
environment. First, follow the steps on the aforementioned web site to
install virtualenv. If you already have easy_install or pip installed,
you can just run one of the following commands at the terminal:

pip install virtualenv
easy_install virtualenv

Otherwise, you can download the virtualenv archive, decompress it, move into
the directory and install it manually, i.e.,

cd virtualenv-X.X
python setup.py install

Once virtualenv is installed, create a virtual environment in a directory called
env (or any other name) with the following command:

virtualenv --no-site-packages env

The virtual environment set up in env is packaged with a program called
easy_install which, as its name suggests, makes it easy to install Python
packages and their dependencies. We will use the virtual environment’s version
of easy_install to install the OLD and its dependencies into the virtual
environment.

There are two ways to do this. The more explicit and verbose way is to specify
the path to the executables in the virtual environment directory. That is, to
run the virtual environment’s python, easy_install or pip
executables, you would run one of the following commands.

/path/to/env/bin/python
/path/to/env/bin/easy_install
/path/to/env/bin/pip

The easier way (on Posix systems) is to activate the Python virtual environment
by running the source command with the path to the activate executable
in your virtual environment as its first argument. That is, run:

source /path/to/env/bin/activate

If the above command was successful, you should see the name of your virtual
environment directory in parentheses to the left of your command prompt, e.g.,
(env)username@host:~$. Now invoking python, easy_install,
paster, pip, etc. will run the relevant executable in your virtual
environment.

Install the OLD

The easiest way to install the OLD is via
Easy Install [http://peak.telecommunity.com/DevCenter/EasyInstall], as in
the command below. (Note that from this point on I am assuming that you have
activated a virtual environment in one of the two ways described above or have
elected not to use a virtual environment.)

easy_install onlinelinguisticdatabase

You can also use pip to install it:

pip install onlinelinguisticdatabase

Once the install has completed, you should see Finished processing
dependencies for onlinelinguisticdatabase. (If you used pip, you will see
something like Successfully installed onlinelinguisticdatabase.) This means
that the OLD and all of its dependencies have been successfully installed.

If you have downloaded the OLD source code and need to install the dependencies,
then move to the root directory of the source, i.e., the one containing the
setup.py file, and run:

python setup.py develop

Configure

Generate the config file

Once the OLD is installed, it is necessary to configure it. This is done by
generating a default config file and making any desired changes. When the OLD’s
setup script is run, several directories will be created in the same directory
as the config file. Therefore, it is a good idea to create the config file in
its own directory. I use the convention of naming production systems using the
ISO 639-3 [http://www-01.sil.org/iso639-3/codes.asp] three-character id of
the object language. To illustrate, I will use the fictitious language id xyz
and will name the directory xyzold, the MySQL database xyzold and the
MySQL user xyzuser. If following this convention, replace “xyz” with the Id
of the language your OLD application will be documenting. To make a new
directory called xyzold and change to it, issue the following commands.

mkdir xyzold
cd xyzold

The first step in configuring the OLD is creating a config file. To create a
config file named production.ini, run:

paster make-config onlinelinguisticdatabase production.ini

By default, the OLD is set to serve at 127.0.0.1 on port 5000, the Pylons
interactive debugger is turned off and the database (RDBMS) is set to
SQLite [http://www.sqlite.org/] (a database called production.db will be
created in the current directory). These defaults are good for verifying that
everything is working ok. On a production system you will need to change the
host and port values in the config file as well as set the database to
MySQL [http://www.mysql.com/]. If you want to get up and running with MySQL
right away, see the Set up MySQL/MySQLdb section; otherwise, continue on to
Edit the config file.

Developers will not need to generate a config file. The test.ini and
development.ini config file should already be present in the root directory
of the source. See the Developers section for details.

Set up MySQL/MySQLdb

The OLD can be configured to use either MySQL or SQLite as its relational
database management system (RDBMS).

While SQLite is easy to install (both the SQLite library and the pysqlite
language binding are built into the Python language), it is not recommended for
multi-user concurrent production systems. Therefore, a production OLD setup
should have MySQL installed. The following instructions assume that you have
successfully installed the MySQL server on your system.

First login to MySQL as root:

mysql -u root -p<root_password>

Then create a database to store your OLD data:

mysql> create database xyzold default character set utf8;

Now create a MySQL user with sufficient access to the above-created database.
In the first command, xyzuser is the username and 4R5gvC9x is the
password.

mysql> create user 'xyzuser'@'localhost' identified by '4R5gvC9x';
mysql> grant select, insert, update, delete, create, drop on xyzold.* to 'xyzuser'@'localhost';
mysql> quit;

Make sure that the above commands worked:

mysql -u xyzuser -p4R5gvC9x
mysql> use xyzold;
mysql> show tables;

Now MySQL is set up with a database called xyzold (with UTF-8 as its default
character set) and a user xyzuser who has access to xyzold. The next
step is to make sure that the python module MySQLdb is installed. Enter a
Python prompt (using your virtual environment, if applicable) and check:

python
>>> import MySQLdb

If you see no output, then MySQLdb is installed. If you see ImportError:
No module named MySQLdb, then you need to install MySQLdb.

Installing MySQLdb can be tricky. On some Linux distributions, it is
necessary to first install python-dev. On distros with the Advanced
Packaging Tool, you can run the following command.

apt-get install python-dev

Once python-dev is installed, run the following to install MySQLdb
(remembering to activate the virtual environment, if necessary).

easy_install MySQL-python

Note that it is also possible to use easy_install to install MySQLdb at
the same time as you install the OLD. Instead of running easy_install
onlinelinguisticdatabase as above, run the following command:

easy_install onlinelinguisticdatabase[MySQL]

Edit the config file

The config file (whose creation was described in Generate the config file) is where an
OLD app is configured. Open the config file (e.g., production.ini) and make
any desired changes. While the config file is self-documenting, this section
supplements that documentation.

(Note that once the OLD is downloaded and installed, it may be used to run
several distinct OLD web services, e.g., for different languages. To do this,
repeat the configuration steps with different settings. For example, to create
two OLD web services, one for language xyz and one for language abc, create
two directories, xyzold and abcold, generate a config file in each, and
edit each config file appropriately, following these instructions.)

The host and port where the application will be served are configured here.
The defaults of 127.0.0.1 (i.e., localhost) and 5000 are fine for
initial setup and testing. During deployment and server configuration, the host
will certainly need to be changed and the port probably also.

The set debug = false line should be left as is on a production setup.
However, for initial testing it is a good idea to comment out this line with a
hash mark (i.e., #set debug = false) so that errors can be debugged. When
the line is commented out and an error occurs, Pylons will generate a detailed
error report with a web interface that can be accessed by navigating to the link
printed to the console (i.e., stderr).

The sqlalchemy.url parameter will need to be changed, depending on the
relational database setup needed. If SQLite will be used, then the
sqlalchemy.url = sqlite:///production.db line should remain uncommented.
Change the database name, if desired; i.e., change production.db to, say,
mydb.sql.

If MySQL will be used, then the first step is to comment out the SQLite line,
and uncomment the two MySQL lines:

#sqlalchemy.url = sqlite:///production.db
sqlalchemy.url = mysql://username:password@localhost:3306/dbname
sqlalchemy.pool_recycle = 3600

Then, change the first MySQL line so that it contains the appropriate values for
your MySQL setup. E.g., using the example setup from Set up MySQL/MySQLdb would
involve changing it to the following:

sqlalchemy.url = mysql://xyzuser:4R5gvC9x@localhost:3306/xyzold

The only other values you may want to change are password_reset_smtp_server,
create_reduced_size_file_copies and preferred_lossy_audio_format.

Uncomment the password_reset_smtp_server = smtp.gmail.com line if you want
the system to send emails using a Gmail account specified in a separate
gmail.ini config file.

Set create_reduced_size_file_copies to 0 if you do not want the system
to create copies of images and .wav files with reduced sizes. Note that in
order for the reduced-copies functionality to succeed with images and .wav files
it is necessary to install the Python Imaging Library (PIL) and FFmpeg,
respectively (see the Soft dependencies section below).

Finally, set the preferred_lossy_audio_format to mp3 instead of ogg
if you would like to create .mp3 copies of your users’ .wav files instead of
.ogg ones. (Note that a default installation of FFmpeg may not be able to
convert .wav to .mp3 without installation of some additional libraries.)

Setup

Once the OLD has been installed and a config file has been created and edited,
it is time to run the setup command. This will generate the tables in the
database, insert some defaults (e.g., some users and useful tags) and create
the requisite directory structure. To set up an OLD application, move to the
directory containing the config file (e.g., xyzold containing
production.ini) and run the paster setup-app command:

cd xyzold
paster setup-app production.ini

If successful, the output should be Running setup_app() from
onlinelinguisticdatabase.websetup. By default, the OLD sends logs to
application.log so if you run cat application.log you should see
something like the following.

Environment loaded.
Retrieving ISO-639-3 languages data.
Creating a default administrator, contributor and viewer.
Tables created.
Creating default home and help pages.
Generating default application settings.
Creating some useful tags and categories.
Adding defaults.
OLD successfully set up.

If you now enter the database and poke around, you will see that the tables have
been created and the defaults inserted.

mysql -u xyzuser -p4R5gvC9x
mysql> use xyzold;
mysql> show tables;
mysql> select username from user;

You should also see two new directories (analysis and files), the
application log file application.log and Python script
_requests_tests.py.

Serve

To begin serving an OLD application, use Paster’s serve command:

paster serve production.ini

The output should be something like the following.

Starting server in PID 7938.
serving on http://127.0.0.1:5000

If you visit http://127.0.0.1:5000 in a web browser, you should see
{"error": "The resource could not be found."} displayed. If you visit
http://127.0.0.1:5000/forms in a web browser, you should see
{"error": "Authentication is required to access this resource."}. These
error responses are to be expected: the first because no resource was specified
in the request URL and the second because authentication is required before
forms can be read. Congratulations, this means an OLD application has
successfully been set up and is being served locally.

When paster setup-app is run, a Python script called _requests_tests.py
is created in the current working directory. This script uses the Python
Requests module to test that a live OLD application is working correctly.
Assuming that you have run paster serve and an OLD application is being
served locally on port 5000, running the following command will run the
_requests_tests script:

python _requests_tests.py

If everything is working correctly, you should see All requests tests
passed. (Note that if you have changed the config file, i.e., the host or
port values, then you will need to change the values of the host and/or
port variables in _requests_tests.py to match.)

Soft dependencies

In order to create smaller copies of image files and .wav files, the OLD uses
the Python Imaging Library (PIL) [http://www.pythonware.com/products/pil/]
and the FFmpeg [http://www.ffmpeg.org/] command-line program. If you would
like your OLD application to automatically create reduced-size images and lossy
(i.e., .ogg or .mp3) copies of .wav files, then these programs should be
downloaded and installed using the instructions on the above-linked pages. I
provide brief instructions here.

In order to allow the specification of phonologies as finite-state transducers,
the OLD uses the command-line programs
foma and flookup [http://code.google.com/p/foma/]. See the linked
page for installation instructions.

In order to search OLD treebank corpora,
Tgrep2 [http://tedlab.mit.edu/~dr/Tgrep2/] must be installed.

NLTK may be used for some OLD functionality.

PIL

To install PIL, download and decompress the
source [http://www.pythonware.com/products/pil/#pil117]. Then move into the
root folder and run setup.py install (remembering to use your virtualenv
Python executable, if necessary):

cd Imaging-1.1.7
python setup.py install

Note

I experienced difficulties installing PIL in this way such that jpeg
functionality was not working. To correctly install PIL, I did:

cd Imaging-1.1.7
~/env/bin/python setup.py build_ext -i
~/env/bin/python selftests.py
~/env/bin/python setup.py install

The OLD accepts .jpg, .png and .gif image file uploads. If you want to test
whether the PIL install can resize all of these formats, create a test file of
each format and run something like the following. If successful, you will have
created a smaller version of each image:

>>> import Image
>>> im = Image.open('large_image.jpg')
>>> im.thumbnail((500, 500), Image.ANTIALIAS)
>>> im.save('small_image.jpg')

FFmpeg

FFmpeg is a command-line tool that can convert .wav files to the lossy formats
.ogg and .mp3. It can be somewhat tricky to install FFmpeg properly and some
installs will not support .mp3 creation by default. For Debian 6.0 (Squeeze), I
can recommend
this tutorial [http://www.e-rave.nl/installing-ffmpeg-on-debian-squeeze-and-newer].

Once ffmpeg is installed, you can check whether .wav-to-.ogg and
.wav-to-.mp3 conversion is working by ensuring you have a file called
old_test.wav in the current directory and issuing the following commands:

ffmpeg -i old_test.wav old_test.ogg
ffmpeg -i old_test.wav old_test.mp3

If successful, you will have created a .ogg and a .mp3 version of your .wav
file.

Deploy

Deploying an OLD application means getting a domain name, serving the
application on the world wide web and setting up some admin scripts. There are
many possible ways to achieve this. In my production systems I have followed
the approach of using Apache to proxy requests to Pylons as described in
Chapter 21: Deployment [http://pylonsbook.com/en/1.1/deployment.html] of
The Pylons Book and have had success with that. I
review that approach here.

Assuming Apache 2, mod_proxy and mod_proxy_http are installed, you
first enable the latter two:

sudo a2enmod proxy
sudo a2enmod proxy_http

Then you create a config file such as the one below in
/etc/apache2/sites-available/ or in the equivalent location for your
platform. I used the config file below for an OLD application deployed for
documenting the Okanagan language. The domain name is okaold.org. I saved
the file as /etc/apache2/sites-available/okaold.org and created the error
logs directory, i.e., /home/old/log. The only configuration necessary for
the OLD config file (i.e., the production.ini file whose creation was
detailed in Generate the config file) is to ensure that the host variable is set to
localhost and the port variable is set to 8081.

NameVirtualHost *
OKA - Okanagan
<VirtualHost *>
 ServerName okaold.org
 ServerAlias www.okaold.org

 # Logfiles
 ErrorLog /home/old/log/error.log
 CustomLog /home/old/log/access.log combined

 # Proxy
 ProxyPreserveHost On
 ProxyPass / http://localhost:8081/ retry=5
 ProxyPassReverse / http://localhost:8081/
 <Proxy *>
 Order deny,allow
 Allow from all
 </Proxy>
</VirtualHost>

Now you can start serving the OLD application with Paster. In order to keep the
server running after you exit the shell, you must invoke paster serve in
daemon mode, as follows:

paster serve --daemon production.ini start

Now disable the default Apache configuration, enable the virtual host config
file just created (in this case okaold.org) and restart Apache:

sudo a2dissite default
sudo a2ensite okaold.org
sudo /etc/init.d/apache2 restart

You might also want the paster serve script to log error messages, which you
can do by specifying a file to log to using the --log-file option. You can
also use the --pid-file option to store the process ID of the running server
in a file so that other tools know which server is running:

paster serve --daemon --pid-file=/home/old/okaold.pid --log-file=/home/old/log/paster-okaold.log production.ini start

As well as specifying start, you can use a similar command with stop or
restart to stop or restart the running daemon, respectively.

The Pylons Book also explains how to
Create init scripts [http://pylonsbook.com/en/1.1/deployment.html#creating-init-scripts]
and how to use crontab to restart a paster server that is serving an
OLD/Pylons application (should that) ever be necessary. See the referenced
sections for details.

You may also wish to write admin scripts to monitor an OLD application to ensure
that it is functioning properly and to email you if not. I may include a guide
for doing that at some future data.

Finally, it is a good idea to make regular backups of the database and the
files and analysis directories of your OLD application. In my
production systems I have used
MySQL database replication [http://www.howtoforge.com/mysql_database_replication]
to create a mirror of my production database on a second server in a different
location. I then use the standard Unix utility rsync to create live copies
of the files and analysis directories on that same second server.
A Python script is run periodically on the second server to perform a mysqldump
of the relevant databases. I will further document my backup setup at a later
date.

Developers

This section provides an overview of the OLD for developers. It covers (1) how
to download the source and install the dependencies, (2) the structure of the
source, (3) how to write and compile the documentation to HTML and PDF, (4) the
creation of Python version-specific virtual environments and (5) the building of
OLD releases as eggs or archives.

For detailed documentation on developing a Pylons application, consult the
excellent documentation for the Pylons framework, i.e., The Pylons Book.

Download & depencency installation

This subsection details how to get the OLD source and install its dependencies.
To download the most up-to-date source code, make sure you have
Git [http://git-scm.com/] installed and run:

git clone git://github.com/jrwdunham/old.git

To install the dependencies, move to the newly created old directory and
run:

python setup.py develop

Directory structure

The onlinelinguisticdatabase directory contains all of the files and
directories that will be packaged into the final distribution. Its
subdirectories are config, controllers, lib, model, public,
and tests. This section gives an overview of the contents of these
directories and the websetup.py file.

The websetup.py file controls how an OLD application is set up. That is,
when paster setup-app config_file.ini is run (or when nosetests is run),
the contents of websetup.py determine what database tables are created, what
defaults are entered into them and what directories are created.

The config directory houses the deployment.ini_tmpl and routing.py
files. The former is the template used to generate the config file when
something like paster make-config production.ini is run. The routing.py
module is where the mappings from URL paths to OLD controller actions are
specified. When a new controller is created or the interface to an existing
controller needs to be changed, the routing.py file must be edited.

The controllers directory holds a module for each OLD controller. For
example, the controllers/forms.py module defines a FormsController
class; the methods of this class (the controller’s actions) return values
which determine the content of particular responses. The index method
(action) of the FormsController class, for example, returns a list of all
form models in the database; since config/routing.py maps GET /forms to
FormsController.index, it is this list of forms that is returned when
GET /forms is requested.

The lib directory holds modules that define functionality used by multiple
controllers. The utils.py module defines a large number of widely-used
functions, classes and data structures; these are made available in controllers
under the h namespace, e.g., the value of h.markupLanguages is the list
of valid markup language string values, as defined in utils.py. The
auth.py script holds the decorators that control authentication and
authorization. The schemata.py module contains the validators that are
applied against user input. The other modules in the lib directory are
mentioned in this document where appropriate; consult the docstrings for more
information.

The model directory contains a module for each SQLAlchemy model used by the
OLD. For example, model/file.py houses the File class which defines the
attributes of the file model and their implementation as columns and relations
in a relational database. The model/model.py is special; it defines the
Model class from which all of the other models inherit a number of methods.
Note that in order to make a model available in the
onlinelinguisticdatabase.model namespace, it must be imported in
model/__init__.py.

The public directory may contain static files, HTML, CSS and JavaScript.
Since the client-side OLD application has not yet been implemented, the
public directory contains, at present, only the iso_639_3_languages_data
which stores the tab-delimited files containing the ISO-639-3 dataset.

The tests directory contains all of the test modules. When the
nosetests command is run, it is the modules here that define the tests. For
example, tests/functional/test_forms.py defines a TestFormsController
class whose methods test the various actions (or functionalities) of the forms
controller. For example, the test_create method of the
TestFormsController class simulates POST /forms requests and confirms
that the system behaves as expected. When testing new funcionality, new tests
should be defined in tests/functional or existing tests should be
supplemented. Note the _toggle_tests.py script which does not define tests
but provides an easy way to turn large numbers of them on or off. For example,
./onlinelinguisticdatabase/tests/functional/_toggle_tests.py on will turn
all tests on and
./onlinelinguisticdatabase/tests/functional/_toggle_tests.py off will turn
them all off. See its docstrings for further usage instructions. Finally, the
tests directory also contains the _requests_tests.py script which
defines some simple tests (using the Requests module) which (as described in the
Serve section) can be run on a live OLD application to ensure that it is
working correctly.

The websetup.py module defines the setup_app function that is called
when the OLD is set up, i.e., when paster setup-app config_file.ini is
issued. The behaviour of the setup process is determined by the name of the
config file. If test.ini is the config file (as is the case when
nosetests is run), then test-specific setup will be performed, i.e., all
database tables will be dropped and then re-created. Otherwise, only the tables
that do not already exist will be created.

Documentation

This section reviews the OLD documentation creation process. The OLD
documentation (i.e., this document) is written using
Sphinx [http://sphinx-doc.org/] and the reStructuredText lightweight markup
language. In order to edit and build the documentation, Sphinx must be
installed:

easy_install sphinx

The reStructuredText source files for the OLD documentation are the
.rst-suffixed files in the docs directory. The
Sphinx documentation [http://sphinx-doc.org/contents.html] has a good
overview of the reStructuredText syntax. Once the source files have been
edited, build the documentation HTML (in docs/_build/html) by moving to the
docs directory and running:

sphinx-build -b html . ./_build/html

To generate a LaTeX version of the documentation in docs/_build/latex, run
(from the docs directory):

sphinx-build -b latex . ./_build/latex

If pdflatex is installed [2], generate a PDF of the documentation by moving to
docs/_build/latex and running:

pdflatex -interaction=nonstopmode OLD.tex

Virtualenv & Python distros

In order to test whether the OLD works on different Python versions or to build
distributions for those versions, it is necessary to create virtual environments
for each such Python distribution.

The pythonbrew [https://pypi.python.org/pypi/pythonbrew/] utility facilitates
the building and installation of different Pythons in a user’s home directory.
Install pythonbrew using the instructions on its web site.

Now run pythonbrew install to install the desired Pythons. For example, to
install Python 2.4.6, 2.5.6 and 2.7.3, run:

pythonbrew install 2.4.6
pythonbrew install 2.5.6
pythonbrew install 2.7.3

Once complete, new Python executables should be installed in
~/.pythonbrew/pythons/Python-2.4.6, ~/.pythonbrew/pythons/Python-2.5.6,
etc. For example, to launch the Python 2.5.6 interactive console, run:

~/.pythonbrew/pythons/Python-2.5.6/bin/python

To create a virtual environment using one of these Pythons, run virtualenv
with the -p option followed by the path to the desired Python executable.
It is also a good idea to choose a name for the virtual environment that makes
it easy to tell what version of Python it uses. For example:

virtualenv -p ~/.pythonbrew/pythons/Python-2.5.6/bin/python env-2.5.6

Make sure that the new virtual environment has the correct python:

~/env-2.5.6/bin/python --version

Note that the OLD works with Python 2.6 and 2.7 but not with 2.4 or 2.5. It has
not been tested with Python 3.

Releases

This section explains how to build stable OLD releases and how to upload them to
PyPI.

To build an egg or a source distribution of a stable release, run the following
two commands, respectively:

python setup.py bdist_egg
python setup.py sdist

Each of these commands will create a new archive in the dist directory.

In order to build an OLD egg distribution and upload it to PyPI in one command,
run the following command. (Note that you will need the OLD’s PyPI password in
order to be permitted to do this.)

python setup.py bdist_egg register upload

To create and upload the source distribution to PyPI (so that, e.g., Pip can be
used to install the OLD), run:

python setup.py sdist register upload

	[1]	The OLD has not been tested on Windows. Some alterations to the source
may be required in order to get it running on a Windows OS. To be clear,
this does not mean that users running a Windows OS will not be able to use
a production OLD web application. A live OLD application is a web service
and users with any operating system should be able to interact with it,
assuming an internet connection is available. What this does mean is that
the OLD, as is, may not run on a Windows server.

	[2]	See this page [http://www.charlietanksley.net/philtex/basics-of-latex-from-the-command-line/]
for an overview of how to use the TeX command-line utilities.

 Copyright 2013, Joel Dunham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OLD 1.0a1 documentation

Introduction

An OLD web service consists of a data structure for storing the artifacts of
linguistic fieldwork and analysis and a read-write interface to that data
structure.

A major design principle of the OLD is that as much work as possible
should be delegated to the user-facing applications so that the OLD web service
can focus on providing secure and responsive multi-user concurrent access to
a central data structure. In some cases, technological restrictions currently
inherent to particular platforms (e.g., the inability of browser-based JavaScript
applications to call external programs) have required server-side implementation
of features that might otherwise be implemented client-side (e.g., morphological
parsing, PDF creation using TeX).

The diagram below illustrates the core components of an OLD application.

[image: _images/OLD_diagram_med_level.png]
When an OLD web application receives HTTP requests, the Routes component decides
which Pylons controller will handle the request. This decision is based on the
HTTP method of the request and the URL. Routes and the controllers conspire to
create a RESTful interface to the data structure qua a set of resources. That
is, a POST request to www.xyz-old.org/forms will be interpreted as a request
to create a new form resource while the same URL with a GET method will be
interpreted as a request to read (i.e., retrieve) all of the form resources.
The first request will be routed to the create action (i.e., method) of the
forms controller (i.e., class) while the second will be routed to the
index action of that same controller. The authentication, authorization,
input validation, data processing, linguistic analysis and database updates and
queries are all handled by the controllers.

As illustrated in the diagram, the Routes and Controllers components can be
conceptually grouped together as the interface of an OLD web service. The
Interface section details this interface.

SQLAlchemy provides an abstraction over the tables and relations of the
underlying database. Tables, their columns and the relations between them
(i.e., the schema) are declared using Python data structures called models and
interaction with the database is accomplished entirely via these. This not only
simplifies interaction with the database (from the Python programmer’s point of
view) but also makes it easier to use different RDBMSs (e.g., SQLite, MySQL)
with minimal changes to the application logic.

As illustrated in the diagram, the Models and RDBMS components can be
conceptually grouped together as the data structure of an OLD web service.
The Data Structure section describes and argues for the utility of the
data structure of the OLD.

 Copyright 2013, Joel Dunham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OLD 1.0a1 documentation

Interface

This section details the RESTful interface to the OLD data structure as well as
resource search, authentication and authorization, input validation and notable
data processing functionality. That is, it explains what kind of effect one can
expect from requesting a particular URL (with a particular HTTP method and a
particular JSON payload) of an OLD web service.

RESTful API

The OLD exposes a RESTful interface to its data structure. In the context of
the OLD, the term RESTful [1] refers to the fact URLs are used consistently
to refer to OLD resources and that HTTP methods dictate the action to be
performed on the resource. For example, URLs of the form /forms and
/forms/id are always routed to the forms controller which provides the
interface for the form resources. If the HTTP method is GET and the URL is
/forms, the system will return all form resources; the same URL with a
POST method will cause the system to create a new form resource (using JSON
data passed in the request body). The URL /forms/id with a PUT method will
result in an update to the form resource with id=id while a DELETE method
on the same URL will cause that resource to be deleted.

This pattern is detailed in the following table.

	HTTP Method
	URL
	Effect
	Parameters

	GET
	/forms
	Read all forms
	optional GET params

	GET
	/forms/id
	Read form with id=id
	

	GET
	/forms/new
	Get data for creating a new form
	optional GET params

	GET
	/forms/id/edit
	Get data for editing form with id=id
	optional GET params

	DELETE
	/forms/id
	Delete form with id=id
	

	POST
	/forms
	Create a new form
	JSON object

	PUT
	/forms/id
	Update form with id=id
	JSON object

The benefit of this consistent interface is that, once you know what resources
the OLD exposes, it is clear how to create new ones, retrieve all or one in
particular, update one or delete one. The resources of the OLD are listed
in the table below.

	Resource (URL)
	SEARCH-able
	Read-only
	Additional actions

	applicationsettings
	
	
	

	collections
	Yes
	
	Yes

	collectionbackups
	Yes
	Yes
	

	elicitationmethods
	
	
	

	files
	Yes
	
	Yes

	forms
	Yes
	
	Yes

	formbackups
	Yes
	Yes
	

	formsearchs
	Yes
	
	

	languages
	Yes
	Yes
	

	orthographies
	
	
	

	pages
	
	
	

	phonologies
	
	
	

	rememberedforms*
	Yes
	
	

	sources
	Yes
	
	

	speakers
	
	
	

	syntacticcategories
	
	
	

	tags
	
	
	

	users
	
	
	

As indicated by the “SEARCH-able” column in the above table, some OLD resources
can be searched using a non-standard [2] SEARCH method with the relevant URL.
The table below uses the files resources to illustrate the search interface.
The details of the search feature (e.g., the format of JSON search parameters)
are laid out in the Search section.

Note

POST /resources/search is a synonym for SEARCH /resources; this is to
allow for search requests from clients that do not allow specification of
non-standard HTTP methods.

	HTTP Method
	URL
	Effect
	Parameters

	SEARCH
	/files
	Search files
	JSON object

	POST
	/files/search
	Search files
	JSON object

	GET
	/files/new_search
	Get data for searching files
	

Requests to GET /resources/new_search return a JSON object which summarizes
the data structure of the relevant resource, thus facilitating query
construction.

For the read-only resources (cf. the third column in the resources table), the
only standard requests that are valid are GET /resources and
GET /resources/id. Since these read-only resources also happen to be
searchable, the search-related requests of the table above are valid for them as
well.

The core OLD resources (i.e., forms, files and collections) deviate from the
RESTful standard in having additional valid URLs associated. For example, the
forms resource has a remember action such that POST /forms/remember will
result in the system associating the forms referenced in the request body to
the user making the request (i.e., the user remembers those forms). Similarly,
the files resource has a serve action such that GET /files/serve/id will
return the file data for the file with id=id. These additional actions are
described in the subsections for the relevant resources/controllers below.

Aside from those described above, the only additional valid URL/method
combinations of an OLD web service have to do with authentication and the
login controller. These are detailed in the Authentication & authorization section.

All other requests to an OLD web service will result in a response with a
sensible HTTP error code and a JSON message in the response body that gives
further information on the error.

GET /resources

Requests of the form GET /resources, e.g., GET /forms, return all
resources of the type specified in the URL. These requests are routed to the
index action of the controller for the resource.

The order of the returned resources may be specified via “orderBy”-prefixed
parameters in the URL query string. For example, a request such as
GET /forms?orderByModel=Form&orderByAttribute=id&orderByDirection=desc will
return all form resources sorted by id in descending order. These ordering
parameters are processed in exactly the same way as those passed as an array
during resource search requests (see Ordering results).

It is also possible to request that the resources returned be paginated. This
is accomplished by passing “page” and “itemsPerPage” parameters in the URL query
string. For example, GET /files?page=3&itemsPerPage=50 will return a JSON
representation of files 101 through 150. Of course, ordering and pagination
parameters may both be supplied in a single request.

GET /resources/id

Requests of the form GET /resources/id, e.g., GET /collections/43,
return a JSON object representation of the resource with the specified id.
These requests are routed to the show action of the controller for the
resource.

GET /resources/new

Requests of the form GET /resources/new, e.g., GET /forms/new, return a
JSON object containing all of the data necessary to create new resources of the
specified type. These requests are routed to the new action of the
controller for the relevant resource. For example, when creating a new form
resource, it is helpful to know the set of valid grammaticality values,
elicitation method names, users, sources, etc. of the system. Therefore, a
request to GET /forms/new will return a JSON object of the form listed
below, where the values of the attributes are arrays containing the relevant
data.

{
 "grammaticalities": [...],
 "elicitationMethods": [...],
 "tags": [...],
 "syntacticCategories": [...],
 "speakers": [...],
 "users": [...],
 "sources": [...]
}

This is really just a convenience that saves the trouble of making multiple
requests (e.g., to GET /tags, GET /sources, etc.)

Parameters in the query string can be used to alter the content of the response
so that only certain datasets are returned. If the URL query string is
not empty, then only the attributes of the response object that have non-empty
parameters in the query string will be returned. For example, the request
GET /forms/new?sources=y&tags=y will result in a response object of the same
form as above except that only the sources and tags attributes will have
non-empty arrays for values.

If the value of a parameter in the URL query string is a valid
ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] datetime string of the form
YYYY-MM-DDTHH:MM:SS, then the value of the corresponding attribute in the
response object will be non-empty only so long as the input datetime does not
match the most recent datetimeModified value of the specified resources.
This permits the requesting of only novel data. For example the request
GET /forms/new?sources=2013-02-22T23:28:43 will return nothing but source
resources and even these only if there are such that have been updated or
created more recently than 2013-02-22T23:28:43.

Some resources have very simple data structures (e.g., tags) and, therefore,
requests of the form GET /resources/new on such resources will return an
empty JSON object.

GET /resources/id/edit

Requests of the form GET /resources/id/edit return the resource with the
specified id as well as all data required to update that resource. These
requests are routed to the edit action of the relevant controller. Such
requests can be thought of as a combination of GET /resources/id and
GET /resources/new. The JSON object in the response body is of the form

{"resourceName": {...}, "data": {...}}

where the value of the resourceName attribute is the same object as that
returned by GET /resources/id and the value of the data attribute is the
same as that returned by GET /resources/new. Parameters supplied in the
URL query string have the same effect as those supplied to
GET /resources/new requests (cf. GET /resources/new).

DELETE /resources/id

Requests of the form DELETE /resources/id result in the resource with the
specified id being deleted from the database. Such requests are routed to the
delete action of the relevant controller. The form and collection resources
are special in that they are first saved to a backup table before being deleted;
thus these types of resources can be restored after deletion. The response
body of a successful deletion request is a JSON object representation of the
content of the resource. As mentioned above, only administrators and their
enterers may delete form, file and collection resources.

POST /resources

Requests of the form POST /resources result in the creation of a resource of
the specified type using the data supplied as a JSON object in the request body.
These requests are routed to the create action of the relevant controller.
The input data are first validated (as detailed in Input validation). If
successful, a JSON object representation of the newly created resource is
returned.

Note

All resources receive, upon successful POST and PUT requests, a value for a
datetimeModified attribute which is a Coordinated Universal Time (UTC)
timestamp. For creation requests on form, file and collection resources, the
user who made the request is recorded in the enterer attribute of the
resource.

PUT /resources/id

Requests of the form PUT /resources/id result in the updating of the
resource of the specified type with the specified id. The data used to update
the resource are supplied as a JSON object in the request body. These requests
are routed to the update action of the relevant controller. As with the
POST requests described above, the input data are validated before the update
can occur. If successful, a JSON object representation of the newly updated
resource is returned. Upon successful update, the previous versions of form and
collection resources are saved to special backup tables of the database (i.e.,
formbackup and collectionbackup.)

JSON

As a general rule, the OLD communicates via JSON [http://www.json.org/].
JSON is a widely-used standard for converting certain data types and (nested)
data structures to and from strings. Strings, numbers, arrays (lists) and
associative arrays (dictionaries) can all be serialized to a JSON string. For
example, a Python dictionary, i.e., a set of key/value pairs such as
{'transcription': 'dog', 'translations': [{'transcription': 'chien'}]} when
converted to JSON would be
'{"transcription": "dog", "translations": [{"transcription": "chien"}]}'.
In most cases, when an OLD web service requires user input, that input is
expected to be JSON in the request body [3].

Search

The OLD provides a powerful search interface to a subset of its resources:
collections, collectionbackups, files, forms, formbackups, formsearches,
languages, rememberedforms and sources. This interface allows for an unlimited
number of filter expressions conjoined via boolean operators into a hierarchical
structure of unbounded depth where each filter expression references a resource
attribute, a relation and a pattern.

In terms of implementation, search expressions are JSON objects that are mapped
to SQLAlchemy query objects which produce SQL queries. In relational
database-speak, the OLD search interface permits multi-table queries while
taking care of the joins and subqueries automatically. The SQLAQueryBuilder
class in lib/SQLAQueryBuilder.py handles the conversion from JSON search
expression objects [7] to SQLAlchemy query objects.

Valid search requests (e.g., SEARCH /forms) must contain in the request body
a JSON object representing the query. The query object has a ‘query’ attribute
whose value is another object which has a mandatory ‘filter’ attribute and an
optional ‘orderBy’ attribute. The values of request.body.query.filter and
request.body.query.orderBy are both arrays, the former representing the
hierarchy of filter expressions conjoined by boolean operators and the latter
representing a simple SQL ORDER BY clause:

{
 "query": {
 "filter": [...],
 "orderBy": [...]
 }
}

Filter expression syntax

OLD query filters are sets of simple filter expressions configured into a
hierarchical structure using negation, conjunction and disjunction. Their
syntax is simple and can be described via the following context-free grammar.

filterExpression ::= simpleFilterExpression | complexFilterExpression
simpleFilterExpression ::= "[" modelName "," attributeName "," relationName "," pattern "]" |
 "[" modelName "," attributeName "," attributeModelAttributeName "," relationName "," pattern "]"
complexFilterExpression ::= "[", "not" "," filterExpression "]" |
 "[", "and" "," "[" filterExpression ("," filterExpression)* "]" |
 "[", "or" "," "[" filterExpression ("," filterExpression)* "]"

That is, a filterExpression is either (1) a simpleFilterExpression or
(2) an array whose first element is the string “not” and whose second element is
another filterExpression or (3) an array whose first element is one of the
strings “and” or “or” and whose second element is an array of one or more
filter expressions.

Simple filter expressions

In plain English, a simple filter expression is something like “the
transcription contains the character ‘a’”. A simpleFilterExpression is an
array with four or five elements. If four, then the first is the name of an OLD
model, the second the name of a valid attribute of that model, the third a
relation and the fourth a pattern or value. Consider the simple filter
expression below (where the forms resources are being searched, i.e.,
SEARCH /forms).

["Form", "transcription", "like", "%a%"]

This expression is mapped to the SQLAlchemy query object:

query(model.Form).filter(model.Form.transcription.like(u'%a%'))

which generates the SQL that follows.

SELECT * FROM form WHERE transcription LIKE '%a%';

A request to SEARCH /forms with this simpleFilterExpression in the
request body would return all form resources whose transcription attribute
contains the character “a”.

When a simple filter expression has five elements, the second is assumed to be
the name of a relational attribute, i.e., an attribute that references another
model, while the third is an attribute of the referenced model. For example,
the Form model has an enterer attribute whose value is a User model
and a User model has a firstName attribute. Therefore, to find all form
resources with enterers whose first name begins with “J” or “S”, we construct
the simple filter expression

["Form", "enterer", "firstName", "regex", "^[JS]"]

which maps to the SQLAlchemy query object:

query(model.Form).filter(model.Form.enterer.has(User.firstName.op('regexp')(u'^[JS]')))

The two following simple filter expressions return all forms lacking enterers
and all forms having them, respectively.

["Form", "enterer", "=", null]
["Form", "enterer", "!=", null]

Some relational attributes of OLD models reference collections, i.e., lists
of zero or more models of a given type. For example, OLD forms can be
associated to one or more files, i.e., the Form model has a files
attribute whose value is a collection of File objects. Since File
objects have id attributes, we can use the filter expression below to
retrieve all forms associated to files with one of the following ids: 1, 2, 33,
5.

["Form", "files", "id", "in", [1, 2, 33, 5]]

The four-element filter expression below returns the same result set as the
five-element one one above. This is because the OLD knows that the Form
model is being queried and that the only relation between the Form and
File models is captured by the files attribute of the Form model.
[5]

["File", "id", "in", [1, 2, 33, 5]]

The two following simple filter expressions return all forms lacking files
and all forms having one or more, respectively.

["Form", "files", "=", null]
["Form", "files", "!=", null]

Complex filter expressions

Complex filter expressions are built from simple filter expressions using “not”,
“and” and “or”.

The following complex filter expression uses “not” to return all form resources
that do not have “a” in their transcriptions.

["not", ["Form", "transcription", "like", "%a%"]]

Conjoined and disjoined filter expressions are exemplified below.

['and', [['Form', 'transcription', 'like', '%a%'],
 ['Form', 'elicitor', 'id', '=', 13]]]
['or', [['Form', 'transcription', 'like', '%a%'],
 ['Form', 'dateElicited', '<', '2012-01-01']]]

Finally, an example of a complex filter expression involving multiple levels
of embedding.

['and', [['Translation', 'transcription', 'like', '%1%'],
 ['not', ['Form', 'morphemeBreak', 'regex', '[28][5-7]']],
 ['or', [['Form', 'datetimeModified', '<', '2012-03-01T00:00:00'],
 ['Form', 'datetimeModified', '>', '2012-01-01T00:00:00']]]]]

Filter relations

OLD search requests permit the relations listed below.

	equality (“=” or “__eq__”)

	inequality (”!=” or “__ne__”)

	like (“like” [6])

	regular expression (“regex” or “regexp”)

	less than (“<” or “__lt__”)

	less than or equal to (“<=” or “__le__”)

	greater than (“>” or “__gt__”)

	greater than or equal to (“>=” or “__ge__”)

	one of (“in” or “in_”)

Note

Some relations can be referenced by more than one name as indicated in the
brackets.

Most of these relations should be self-explanatory. However, the like and
regular expression relations merit further discussion.

The like relation

The “like” relation is simply the SQL LIKE operator. The pattern following
the “like” relation may contain the wildcard characters “%” and “_”. The
percent sign matches zero or more of any character while the underscore matches
exactly one instance of any character. These wildcards are illustrated via
some typical use cases below.

Find all forms whose transcription contains “t”:

["Form", "transcription", "like", "%t%"]

Find all forms whose transcription begins with “T”:

["Form", "transcription", "like", "T%"]

Find all forms whose transcription ends with “t”:

["Form", "transcription", "like", "%t"]

Find all forms that contain “k”, followed by any single character, followed by
“t”:

["Form", "transcription", "like", "%k_t%"]

Note

As indicated by the above examples, OLD filter expressions are
case-sensitive.

The regexp relation

The “regexp” (a.k.a. “regex”) relation implements regular expression matching.
[8] Regular expressions are tools for specifying complex patterns on
strings. As with the “like” relation described above, certain characters and
constructions in “regexp” search patterns have special meanings.

By default, regular expressions perform a substring match. That is, an OLD
filter expression like the one that follows will return all forms that contain
the string “it” anywhere in the value of their transcription attribute.

["Form", "transcription", "regex", "it"]

We can refer to the beginning or end of the string using the anchors “^” and
“$”. For example, the following two filter expressions find all forms whose
transcription begins with “T” or ends with “s”, respectively.

["Form", "transcription", "regex", "^T"]
["Form", "transcription", "regex", "s$"]

The period ”.” matches any character. For example, the OLD filter expression
below will match all forms that have “kat”, “kit”, “kst”, “kqt”, etc. in their
transcription values.

["Form", "transcription", "regex", "k.t"]

It is also possible to specify a pattern that matches a limited set of
characters using character classes, i.e., sequences of characters enclosed in
square brackets. For example, the following OLD filter expression will match
all forms whose transcription value contains “k”, followed by a vowel, followed
by “t”. (Of course, unicode characters are permitted as well so accented and
IPA vowels could be specified here also.)

["Form", "transcription", "regex", "k[aeiou]t"]

If the caret character “^” is the first character in the character class, then
the class matches any character except those it contains. For example, the
following OLD filter expression will match all forms whose transcriptions
contain a “k”, followed by anything but a “q” or another “k”, followed by a
“t”.

["Form", "transcription", "regex", "k[^qk]t"]

The vertical bar “|” is the alternation metacharacter. It matches either the
string to its left or the string to its right. For example, the following OLD
filter expression will return all forms containing a translation that contains
either “the cat ran” or “the dog ran”.

["Form", "translations", "transcription", "the (cat|dog) ran"]

Regular expressions also support quantification. That is, it is possible to
specify that a pattern zero or one times (using ”?”), zero or more times (using
“*”), one or more times (using “+”), exactly n times (using “{n}”), between
n and m times (using “{n,m}”) and n or more times (using “{n,}”).

For example, to find all forms whose transcription is a single word with one
syllable whose nucleus is transcribed using exactly two vowels, an OLD filter
expression like the following might be appropriate.

["Form", "transcription", "regex", "^[ptkmns][aeiou]{2}[ptkmns]$"]

Quantifiers could also be used to filter resources by the length of one of their
fields. For example, to find all forms whose transcriptions contain at least
five but no more than ten characters, one could use the following OLD filter
expression.

["Form", "transcription", "regex", "^.{5,10}$"]

Note

Regular expressions will treat unicode combining characters as separate
characters. Since the OLD applies unicode canonical decomposition
normalization [9] on all input, a string like “á” will be interpreted by
the regular expression parser as containing two strings, the “a” and the
COMBINING ACCUTE ACCENT (u+0301) character. Keep this in mind when using
regular expression quantifiers to filter based on string length or when using
character sets. In the latter case, it is usually safer to use parentheses
and the alternation metacharacter than character sets. To illustrate,
consider the two examples below. The first OLD filter expression will match
“oao”, “oio” and “óo”, which is probably not what was intended. The second
filter expression will match “oáo” and “oío”, which is probably what was
intended.

["Form", "transcription", "regex", "o[áí]o"]
["Form", "transcription", "regex", "o(á|í)o"]

Ordering results

In making a search request of an OLD web service, it is possible to specify the
order in which the results are returned. This is accomplished by specifying
an orderBy attribute for the JSON query object that is passed as input
in the body of the request. Remember that OLD search requests must contain an
object of the following form (where the orderBy attribute is optional).

{"query": {
 "filter": [...] ,
 "orderBy": [...]}}

The value of the orderBy attribute is an array containing exactly three
strings where the first is the name of a model/resource, the second the name of
an attribute of the model and the third is a direction, i.e., “asc” or “desc”.
For example, the following JSON object passed in the body of a request to
SEARCH /forms would return all forms whose transcription begins with “p”
ordered by id in descending order.

{"query": {
 "filter": ["Form", "transcription", "regex", "^p"],
 "orderBy": ["Form", "id", "desc"]}}

Non-standard API

This section describes the valid requests that are not covered by the standard
RESTful and search interfaces documented in the previous sections. A subset of
OLD resources possess such supplemental interfaces. This section is organized
by resource.

Forms

Form resources represent linguistic forms and are the core of an OLD web
service. The non-standard interfaces of form resources are described here.

GET /forms/history/id

Requests to GET /forms/history/id are routed to the history action of
the forms controller. Such requests return a JSON object representing the
history, or previous versions, of the form with the specified id. The id
parameter can be the integer id or the
Universally Unique Identifier [http://en.wikipedia.org/wiki/Universally_unique_identifier]
(UUID) of the form. [10] The JSON object returned is of the form

{"form": { ... }, "previousVersions": [...]}

where the value of the “form” attribute is the JSON representation of the form
while the value of “previousVersions” is an array of objects representing the
previous versions of the form. If the form has been deleted, the value of the
“form” attribute will be null and if the form has not been updated or
deleted, the value of the “previousVersions” attribute will be an empty array.

POST /forms/remember

Requests to POST /forms/remember are routed to the remember action of
the forms controller and cause the forms referenced in the request body to
be appended to the rememberedForms collection of the user making the
request. The expected input is an object of the form

{"forms": [id1, id2, ...]}

where id1, id2, etc. are form integer ids.

PUT /forms/update_morpheme_references

Requests to PUT /forms/update_morpheme_references regenerates values for the
morphemeBreakIDs, morphemeGlossIDs, syntacticCategoryString and
breakGlossCategory attributes of all forms in the system. (See the
Morphological processing and Form sections for
details on these attributes.) The response generated by this request contains a
JSON array of ids corresponding to the forms that were updated. Only
administrators are authorized to make this request.

Warning

It should not be necessary to request the regeneration of morpheme references
via this request since this should already be accomplished automatically by
the call to updateFormsContainingThisFormAsMorpheme on all successful
update and create requests on form resources. This interface is, therefore,
deprecated (read: use it with caution) and may be removed in future versions
of the OLD.

Files

OLD file resources are representations of binary files stored on a filesystem.
From a linguist’s point of view, they are the audio/video records of linguistic
fieldwork, the images (or audio or video) used as stimuli, PDFs of relevant
papers or handouts, etc. – anything that is relevant to a piece or a collection
of language data. Multiple file resources can be associated to a given form or
collection resource. Thus, for example, a form representing a sentence could be
associated to a large audio recording of an elicitation session, a smaller audio
recording of just the sentence being uttered, an image used to illustrate a
context for a speaker, etc. See the File section for more
details on files.

GET /files/serve/id

Requests to GET /files/serve/id return the file data of the file resource
with the given id, assuming the authenticated user is authorized to access that
resource. If the file with the specified id is a subinterval-referencing file,
the file data of the parent file is returned; if the file data are hosted
externally, an explanatory error message is returned. (See the
File for an explanation of subinterval-referencing and
externally hosted files.)

GET /files/serve_reduced/id

Requests to GET /files/serve_reduced/id return the file content of the
reduced-size copy of the file which was created by the OLD upon file creation.
If there is no reduced-size copy of the file, the OLD returns an error message.
These requests handle subinterval-referencing and externally hosted files in the
same way as described in the above subsection.

Collections

Collections are documents that can reference forms and are useful for creating
records of elicitation sessions or for writing papers using data stored on an
OLD application. See the Collection section for more
details on collections.

GET /collections/history/id

Requests to GET /collections/history/id are routed to the history action
of the collections controller and return a JSON object representing the
history, or previous versions, of the collection with the specified id. The id
parameter can be the integer id or the
Universally Unique Identifier [http://en.wikipedia.org/wiki/Universally_unique_identifier]
(UUID) of the collection. [10] The JSON object returned is of the form

{"collection": { ... }, "previousVersions": [...]}

where the value of the “collection” attribute is the JSON representation of the
collection while the value of “previousVersions” is an array of objects
representing the previous versions of the collection. If the collection has
been deleted, the value of the collection attribute will be null and if
the collection has not been updated or deleted, the value of the
previousVersions attribute will be an empty array.

Application settings

The application-wide settings for an OLD application are stored as application
settings objects. These resources have non-standard interfaces insofar as only
administrators are permitted to create, update or delete them. Other types of
users can only read them, i.e., request GET /applicationsettings and
GET /applicationsettings/id. The application settings resources are also
unique in that the most recently created one (i.e., that with the largest id) is
designated as the active application settings and is the one that affects the
behaviour of the rest of the application. Therefore, application-wide behaviour
may be configured either by updating the active application settings resource or
by creating a new (and hence active) one. The latter approach is recommended
since the previously created application settings resources will provide a
history of previous configurations.

Users

User resources represent the users (i.e., administrators, contributors and
viewers) of an OLD application. The interface to this resource is non-standard
in that only administrators are authorized to create or delete user resources
and a user resource can only be updated by administrators and the holder of the
user account. See the User section for more details on
users.

Remembered forms

Each OLD user has a rememberedForms attribute whose value is a collection of
zero or more form resources that the user has memorized. Since these
collections can grow quite large, they are treated as a resources of their own
and are not affected by interactions with user resources. The interface to the
remembered forms resources are non-standard in that ...

GET /rememberedforms/id

Requests to GET /rememberedforms/id return the array of forms remembered by
the user with the supplied id. Such requests are routed to the show action
of the rememberedforms controller. Ordering and pagination parameters may
be provided in the query string of this request in exactly the same way as with
standard GET /resources requests of conventional resources (cf.
GET /resources).

UPDATE /rememberedforms/id

Requests to UPDATE /rememberedforms/id are routed to the update action
and set the remembered forms of the user with the supplied id to the set of
forms referenced in the JSON array of form ids sent in the request body. This
type of request accomplishes creation, updating and deletion of a
remembered form “resource”. Only administrators and the user with the supplied
id can make licit requests to UPDATE /rememberedforms/id. As with requests
to POST /forms/remember, requests to UPDATE /rememberedforms/id should
contain a JSON request body of the form {"forms": [16, 28, 385]}.

Note

The remember action of the forms controller has a similar, but more
restricted, effect, i.e., requests to POST /forms/remember can add forms
to (but not delete them from) the remembered forms collection of the user who
makes the request.

SEARCH /rememberedforms/id

Requests to SEARCH /rememberedforms/id return all form resources remembered
by the user with the supplied id and which match the JSON search filter passed
in the request body. These requests are routed to the search action.
Requests to POST /rememberedforms/id/search have the same effect as those to
SEARCH /rememberedforms/id.

Note

The same effect can be achieved by conjoining the filter expression
["Memorizer", "id", "=", id] to an existing search on form resources,
i.e., a request to SEARCH /forms.

Authentication & authorization

Speakers of endangered languages and their communities often require that the
language data gathered by researchers not be made available to the public at
large. Therefore, authentication (i.e., a username and password) is required in
order to access data on an OLD web service [4].

In addition to authentication, the OLD possesses a role-based system of
authorization. The three roles are administrator, contributor and viewer.

Viewers are only able to perform read requests, e.g., view all form resources,
retrieve a particular file resource, search the collections resources, etc.

Contributors have read and write access to most resources, with some
restrictions. Contributor U1 is not permitted to delete a form, file or
collection entered by contributor U2. Only administrators and U1 can delete
a form, file or collection entered by U1. In addition, only administrators
and user U1 are permitted to update the user resource representing U1.

Administrators have unrestricted access to read and write any resource. Only
administrators can create or delete users and only administrators have write
access to application settings resources.

Separate from the role-based division of users is a classification into
restricted and unrestricted users. While administrators are, by default, always
unrestricted, the application settings can specify a subset of contributors and
viewers as unrestricted. Only unrestricted users are permitted to access
restricted objects, i.e., forms, files or collections tagged with the
“restricted” tag. Users not classified as unrestricted (i.e., restricted users)
are unable to access restricted objects in any way. Since core objects can be
associated to one another (e.g., a form can be associated to multiple files),
restricted status can spread from object to object. For example, an
unrestricted form becomes restricted as soon as it is associated to a restricted
file.

The login controller effects authentication. Its interface is detailed in
the following table.

	HTTP Method
	URL
	Effect
	Parameters

	POST
	/login/authenticate
	Attempt to authenticate
	JSON object

	GET
	/login/logout
	De-authenticate
	

	POST
	/login/email_reset_password
	Email a newly generated password to
the user
	JSON object

POST /login/authenticate attempts authentication using the provided input,
i.e., a JSON object on the request body of the form
{"username": " ... ", "password": " ... "}. If successful, authenticated
status is persisted across requests via a cookie-based session object where
the value of session['user'] is the user model of the authenticated user.

A GET /login/logout request removes the 'user' key from the session
object associated with the cookie passed in the request. That is, it
de-authenticates, or logs out, the user.

A POST /login/email_reset_password request with a JSON object in the request
body of the form {"username": " ... "} attempts to create a new, randomly
generated password for the user with the provided username and notify the user
via email of the change. If the server is unable to send email, the password
will not be reset and a JSON error message will be returned in the response.

Note

If an SMTP mail server cannot be used, it is possible (as detailed in the
comments of the config file that is generated when paster make-config is
run) to configure an OLD application to send email via a specified Gmail
account.

For more details on the authentication and authorization scheme of the OLD,
please consult the API documentation and/or the source code. Most relevant are
the lib/auth.py, controllers/login.py, controllers/forms.py,
controllers/files.py and controllers/oldcollections.py modules.

Input validation

When users attempt to create a new resource or update an existing one, the OLD
attempts to validate the input. If validation fails, the status code of the
response is set to 400 and a JSON object explaining the issue(s) is returned,
i.e., an object of the form
{'error': 'error message'} or
{'errors': {'field name 1': 'error message 1', 'field name 2': 'error message 2'}}.

Standard validation

Standard validation is validation on user input that is applied by all OLD
applications in the same way.

Some representative examples will illustrate. All forms require some string in
their transcription field and at least one translation. References to other OLD
resources via their ids are validated for existence; e.g., when an elicitor for
a form is specified via a user id, then validation ensures that the id
corresponds to a user in the database. User-supplied values for date fields
must be in mm/dd/yyyy format. Emails must be correctly formatted. Files
uploaded must be one of the allowed file types (e.g., .jpg, .wav) of the OLD.

The Pylons controller classes that control the creation and updating of
resources ensure that all such validation is passed before these requests can
succeed. The validators that encode these validations are written using the
FormEncode [http://www.formencode.org] library and can be found in the
lib/schemata.py module of the OLD source. For further information on input
validation, consult the Data Structure section, the API documentation
and/or the source code.

Object language validation

In addition to the standard validation described above, particular OLD
applications can control how, or whether, transcriptions of the object language
are validated. The relevant form attributes are transcription,
phoneticTranscription, narrowPhoneticTranscription and
morphemeBreak. By configuring the OLD application’s settings, adminstrators
can control what types of strings are permitted in these fields. This is useful
for when groups of researchers want to ensure that, say, all morpheme
segmentation strings (i.e., morphemeBreak values) are restricted to
sequences of phonemes from the specified inventory plus the specified morpheme
delimiters.

The table below shows how object language transcription validation is
configured.

	Form attribute
	Relevant inventory or orthography
	Validation parameter

	transcription
	storageOrthography
	orthographicValidation

	phoneticTranscription
	broadPhoneticInventory
	broadPhoneticValidation

	narrowPhoneticTranscription
	narrowPhoneticInventory
	narrowPhoneticValidation

	morphemeBreak
	phonemicInventory*
	morphemeBreakValidation

The validation parameter column lists the attributes of the application settings
resource that control whether the form attribute in the first column should be
validated against the relevant inventory or orthography. Each of the attributes
in the validation parameter column can have one of three possible values:
None, Warning or Error. Only if the attribute is set to Error
will inventory/orthography-based validation occur.

For example, if the current application settings resource has
orthographicValidation set to Error, then input validation will ensure
that form transcriptions contain only graphemes (i.e., characters or character
sequences) from the storage orthography plus punctuation characters and the
space character.

When validation is enabled on the phonetic transcription fields, only graphs
from the specified inventory plus the space character are permitted (i.e., no
punctuation).

The morphemeBreak attribute’s validation settings are slightly more complex
since it is possible to choose between the storage orthography or the phonemic
inventory when configuring validation. This is done by setting the
morphemeBreakIsOrthographic attribute of the application settings resource
to true in the former case and false in the latter. For example,
if morphemeBreakIsOrthographic is set to false and
morphemeBreakValidation is set to Error, then input to the
morphemeBreak field will be rejected if it contains characters outside of
the specified phonemic inventory, the specified morpheme delimiters and the
space character.

As implied in the above discussion, the application settings resource has
morphemeDelimiters and punctuation attributes for specifying sets of
valid morpheme delimiters and punctuation, respectively.

Sometimes it is desirable to include foreign words in the object language
transcriptions while still permitting validation against inventories and
orthographies on these fields. For example, in a system where morphemeBreak
validation is enabled and the phonemic inventory is /p/, /t/, /k/, /i/, /a/,
/u/, it might be desirable to allow a morphemeBreak value of “ki dog katti”
but prohibit “ki dog kotti”. The OLD permits this via the special “foreign
word” tag on form resources. When a form is tagged as a foreign word, its
transcription values affect validation. So, if the system were to contain a
foreign word form with “dog” as its morphemeBreak value, then validation
would correctly allow both instances of “dog” in the above two examples while
disallowing the latter example because of the illicit “o” in “kotti”. The
function updateApplicationSettingsIfFormIsForeignWord is called in the
forms controller upon successful create and update requests and is
responsible for updating the validators with the foreign word information.

Processing

When requests cause resources to be created or updated, the OLD may perform some
additional processing that may affect the values of certain attributes of the
target resource or even of other resources. The notable data processing
functionalities are listed below and are detailed in their own subsections.

	the generation of values for form attributes related to morphological analysis

	the updating of transcription validators when foreign words are entered

	the resolution and cacheing of collection-collection and collection-form cross-references

	the creation of reduced-size copies of the binary files of file resources

Morphological processing

Values for four attributes of form resources related to morphological analysis
are generated on create and update requests. These are the morphemeBreakIDs,
morphemeGlossIDs, syntacticCategoryString and breakGlossCategory
attributes. The function compileMorphemicAnalysis in the forms
controller is responsible for generating these values.

The values of the morphemeBreakIDs and morphemeGlossIDs attributes are
arrays that hold references to other forms that match the morphemes indicated in
the user-defined morphemeBreak and morphemeGloss attributes. Each array
has one array per word in the relevant field, each word array has one array per
morpheme and each morpheme array has one array per match found. Matches are
ordered triples where the first element is the id of the match, the second is
the morphemeBreak or morphemeGloss value of the match and the third is
the syntacticCategory.name of the match or null if no category is
specified. As illustration, consider a database containing the following forms.

	id
	transcription
	morphemeBreak
	morphemeGloss
	syntacticCategory.name

	1
	chien
	chien
	dog
	N

	2
	s
	s
	PL
	Agr

	3
	s
	s
	PL
	Num

	4
	le
	le
	the
	D

	5
	cour
	cour
	run
	V

	6
	ent
	ent
	3.PL
	Agr

	7
	les chiens courent
	le-s chien-s cour-ent
	the-PL dog-PL run-3PL
	S

When the form with id 7 is entered, the system will generate the following
arrays for the morphemeBreakIDs and morphemeGlossIDs attributes.

morphemeBreakIDs = [
 [
 [[4, 'the', 'D']],
 [[2, 'PL', 'Agr'], [3, 'PL', 'Num']]
],
 [
 [[1, 'dog', 'N']],
 [[2, 'PL', 'Agr'], [3, 'PL', 'Num']]
],
 [
 [[5, 'run', 'V']],
 [[6, '3.PL', 'Agr']]
]
]
morphemeGlossIDs = [
 [
 [[4, 'le', 'D']],
 [[2, 's', 'Agr'], [3, 's', 'Num']]
],
 [
 [[1, 'chien', 'N']],
 [[2, 's', 'Agr'], [3, 's', 'Num']]
],
 [
 [[5, 'cour', 'V']],
 []
]
]

Note

The morphemeBreakIDs[0][1] value contains two match triples because the
second morpheme of the first word in the morphemeBreak line, i.e., “s”,
matches two forms, i.e., the forms with ids 2 and 3. Similarly,
morphemeGlossIDs[0][1] contains two analogous match triples, the
difference in this case being that the morpheme’s phonemic/orthographic
representation is listed and not its gloss. In contrast, the morpheme break
“ent” matches form 6, hence the single match triple in
morphemeBreakIDs[2][1], whereas “3PL” matches nothing, hence the absence
of matches in morphemeGlossIDs[2][1].

The purpose of the morphemeBreakIDs and morphemeGlossIDs attributes is
that they record the extent to which the morphemic analysis of a given form is
in accordance with the lexical items listed in the database. If these values
were not generated server-side upon create and update requests, then for any
user-facing application to display such information would require many requests
and database queries each time a form were displayed. The information in these
two attributes is quite valuable in that it can be used to immediately inform
users when the lexical items implicit in their morphological analyses are not
yet listed in the database or when small differences in, say, glossing
conventions are masking underlying consensus in analysis.

At the same time as the morphemeBreakIDs and morphemeGlossIDs values are
generated, so too are the values for the syntacticCategoryString and
breakGlossCategory attributes. These values for our example form 7 from
above would be:

syntacticCategoryString = 'D-Agr N-Agr V-Agr'
breakGlossCategory = 'le|the|D-s|PL|Agr chien|dog|N-s|PL|Agr cour|run|V-ent|3PL|Agr'

The value of the syntacticCategoryString attribute is a string of syntactic
category names corresponding to the string of morphemes in the morphemic
segmentation.[#f11]_ Since the syntactic category string can be used to filter
form resources on search requests, its generation facilitates search based on
high-level morphological patterns. For example, using the syntactic category
string, one could use regular expressions to search for all forms consisting of
an NP followed by a VP.

Note

Given our example dataset, 'D-Num N-Num V-Agr' is a reasonable
(and perhaps preferable) syntactic category string value. However, the
system has no way of knowing this and therefore when there are two matches
for a morpheme (as there are for “s”) it arbitrarily chooses the syntactic
category of the lexical form with the lowest id.

The value of breakGlossCategory is a string that unambiguously represents
the morphemic analysis of the form. Each morpheme is taken to be a triplet
consisting of a phonemic representation (i.e., the morphemeBreak value), a
semantic representation (i.e., the morphemeGloss value) and a categorial
value (i.e., the syntacticCategory.name value). These break-gloss-category
triplets are delimited by the vertical bar “|” and each such triplet is joined
using the morpheme delimiters of the morphemeBreak value.

This attribute makes it possible to search for forms that contain a specific
morpheme. Consider the case where one wanted to find all forms containing the
morpheme “s” glossed as “PL” of category “Num”. Performing a regular expression
search on the morphemeBreak line for the pattern -s(|-|$) (i.e., “-s”
followed by a space, “-” or the end of the string) would be insufficient since
it might also find forms containing an “s” morpheme with a different gloss.
Conjoining the above regular expression filter with another on the
morphemeGloss line with the pattern -PL(|-|$) would still be
insufficient since it would (contra what is desired) match a form with a
morphemeBreak value of “le-s oiseau-x” and a morphemeGloss value of
“the-plrl bird-PL”. By searching the forms according to those whose
breakGlossCategory value matches the regular expression
-s\|PL\|Num(|-|$), one can be assured of finding all and only all the forms
containing the morpheme “s”/”PL”/”Num”

Given the above discussion, it is evident that an update to an existing
lexical form, the creation of a new one or the updating of the name of a
syntactic category may require updating the morphemeBreakIDs,
morphemeGlossIDs, syntacticCategoryString and/or breakGlossCategory
values of a number of different forms. The OLD accomplishes this by calling
updateFormsContainingThisFormAsMorpheme whenever a form is created or
updated. This function first assesses whether the newly created/updated form is
lexical and, if so, it selects all forms whose morphological analyses implicitly
reference the lexical form and updates the relevant fields appropriately. Care
is taken to reduce database select queries to an absolute minimum with the end
result being that the majority of calls to
updateFormsContainingThisFormAsMorpheme will require only one select query,
i.e., the one to find all of the forms that reference the lexical item just
created/updated. In addition, when the name of a (lexical) syntactic category
is changed, updateFormsContainingThisFormAsMorpheme is called on each form
that has that category.

Foreign words

Whenever a form is created, updated or deleted, the forms controller calls
updateApplicationSettingsIfFormIsForeignWord. This function is responsible
for updating the transcription validators of the application settings if the
form is a foreign word. As described in Object language validation,
forms tagged with the “foreign word” tag will create exceptions to the
user-defined object language transcription validation. For example, if a form
is entered with transcription, morphemeBreak and morphemeGloss
values of “John”, “John” and “John” and is tagged as a “foreign word”, then the
system will allow the string “John” to be included in the transcription
field of other forms even if validation is set to reject forms whose
transcriptions contain, say, “J” or “h”.

Note

It is desirable to be able to enter such a lexical entry as “John” with a
category of, say, “PN” since doing so will result in sensible
syntacticCategoryString values for forms containing “John” in their
morphemeBreak value.

Collection references

The contents attribute of collections is a string that may contain
references to forms and other collections. These references determine the value
of the contentsUnpacked, html and forms attributes.

When the value of the contents attribute of an existing collection is
updated, the update action calls
updateCollectionsThatReferenceThisCollection in order to update the
contentsUnpacked, html and forms values of all of the collections
that reference the updated collection. This same function is called when a
collection is deleted; in this case, all references to the deleted collection
are removed from any collections that were referencing it and the appropriate
values are updated. Similarly, when a form is deleted, the delete action
calls updateCollectionsReferencingThisForm and all references to the
to-be-deleted form are removed from any collections that reference it.

See the Collection section for more details on collection
references and the attributes whose values depend on them.

Lossy file copies

When new file models are created with locally stored file data, the OLD may
create reduced-size copies of certain file types and store them, by default, in
files/reduced_files/. Such lossy copies are created when
create_reduced_size_file_copies is set to a truthy value (e.g., “1”) in the
config file and if the relevant utilities are installed, i.e., for images the
Python Imaging Library and for WAV files the FFmpeg command-line utility. See
the Soft dependencies and File sections for more
details.

	[1]	See this StackOverflow page [http://stackoverflow.com/questions/671118/what-exactly-is-restful-programming]
for a discussion on what exactly REST means and read
Fielding’s thesis [http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf]
for the source of the term.

	[2]	The WebDAV standard includes a SEARCH [http://www.webdav.org/specs/rfc5323.html]
method so this is not entirely without precedent.

	[3]	In contrast to POST, PUT and DELETE requests, HTTP GET requests are
not, canonically, supposed to possess contentful request bodies; therefore,
when optional parameters are permissible on such requests, the OLD will
expect GET parameters in the URL string.

	[4]	Future versions of the OLD may make authentication a configurable
option, thus allowing publicization of all data. Another possibility is that
the system could allow users to tag some data as public and that these data
could be accessed without authentication. A final possibility would be to
publicize all data but allow some data to be encrypted such that only
authenticated users could decrypt them.

	[5]	Note that while the results returned will be the same, the SQLAlchemy
query object constructed and the SQL issued to the database will be distinct.
That is, the filter expression ["Form", "files", "id", "in", [1, 2, 33, 5]]
maps to the SQLAlchemy query
query(model.Form).filter(model.Form.files.any(model.File.id.in_([1, 2, 33, 5])))
while ["File", "id", "in", [1, 2, 33, 5]] maps to
fileAlias = aliased(File) and
Session.query(Form).filter(fileAlias.id.in_([1, 2, 33, 5])).outerjoin(fileAlias, Form.files).

	[6]	Substring pattern match is effected via the SQL LIKE relation.
TALK ABOUT WILDCARDS HERE

	[7]	Actually, the search actions of the relevant controllers convert the
JSON string to a Python dictionary using the loads function of the
simplejson module.

	[8]	With MySQL as RDBMS, the “regexp” relation is simply the standard MySQL
REGEXP operator, i.e., an implementation of POSIX extended regular
expressions. Since SQLite does not implement a REGEXP operator, the OLD
supplies one using the standard re Python module. The table on
this page [http://www.regular-expressions.info/refflavors.html] does a
good job of detailing the difference between these two regular expression
implementations.

	[9]	Cf. http://unicode.org/reports/tr15/

	[10]	(1, 2) Since some RDBMSs reuse primary key integers when a record is deleted,
it is not possible to associate forms and collections to their backups via
their integer id attributes. Therefore, both form and collection resources
have UUID attributes and are associated to their backup objects via both
form_id/collection_id and UUID attributes. The safest way,
therefore, to request all of the backups of a given form/collection,
therefore is to pass the UUID to the relevant history GET request.

	[11]	Note that the morpheme delimiters for both the
syntacticCategoryString and breakGlossCategory values are taken,
arbitrarily, from the morphemeBreak value. That is, if the morphemic
segmentation were “chien-s” and the gloss string were “dog=PL” (and “-” and
“=” were both valid morpheme delimiters of the system), then the syntactic
category string would be ‘N-Num’ and not ‘N=Num’. Similarly, the
breakGlossCategory value would be ‘chien|dog|N-s|PL|Num’ and not
‘chien|dog|N=s|PL|Num’.

 Copyright 2013, Joel Dunham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OLD 1.0a1 documentation

Data Structure

This page describes the data structure of the OLD. The OLD data structure is a
representation of the artifacts of linguistic fieldwork and their properties.
This data structure is implemented as tables and their inter-relations in a
relational database. However, it is here presented using the language of
model objects and their attributes, i.e., using the conceptual structure of
the object-relational mapping provided by SQLAlchemy.

The prototypical OLD model object is the form which represents a linguistic
form, i.e., a morpheme, word, phrase or sentence elicited by a linguistic
fieldworker. Some of the representative attributes of the form model are
transcription, morphemeBreak, morphemeGloss, translations,
grammaticality, speaker and dateElicited.

This exposition is structured according to the models defined by the OLD.[1]
Each section begins with an overview of the model. The attributes of the model
are described and justified in alphabetically ordered subsections. Included in
these subsections are specifications of what constitutes a licit[2] value
for each attribute as well as the methods of construction for system-generated
values. Each model section details the format of the input expected upon create
or update requests as well as the format of the model when returned. Note that
all of the attributes of the objects in the input descriptions must be present.
In general, unspecified values should be represented as empty strings or JSON
null. If the expected value is an array of ids of a given model, then
unspecified is indicated by an empty array ([]). For example, the JSON
object used to create a form resource with no elicitor and no files associated
would (with other attributes omitted) look like
{"elicitor": null, "files": []}.

The id and datetimeModified attributes are common to all models and are
therefore described here in order to avoid repetition. The former is the
integer value created by the RDBMS each time a new row is created in a table.
Each model has an id value that is unique among all other models of that
type. The larger the id value the more recently added is the model. The
datetimeModified attribute holds a datetime value. It is a UTC timestamp
generated by the application logic whenever a model is created or updated.
Datetime values are returned by OLD web services as strings in ISO 8601 format,
e.g., “2010-01-29T09:33:27”.

A note on the terminology of resources, controllers, models and tables.
There is a near 1-to-1-to-1-to-1 correspondence between the resources exposed
by an OLD application, the controllers that facilitate interaction with them,
the models that enode their structure and the RDBMS tables where their data
are stored. For example, form resources are accessed via the forms
controller and the data for each form is represented internally as a form
model object which is persisted to a form table in the database. Some
resources, such as the rememberedforms quasi-resource described in
Interface, have no corresponding model or table while some tables, e.g.,
the formtag table that stores the many-to-many relations between the
form and tag tables, have no model or controller. (Note that because
of a naming conflict, the controller responsible for OLD collections resources
is in controllers/oldcollections.py not controllers/collections.py.)

Note finally that the OLD treats all strings as unicode. Data input to the
database or written to disk are UTF-8 encoded. The OLD applies unicode
canonical decomposition normalization [3] to all string data (including user
input, search query patterns and system-generated data). This means that the
character “á” will be stored as “LATIN SMALL LETTER A” (U+0061) followed by the
combining character “COMBINING ACCUTE ACCENT” (U+0301) even when it is entered
as the canonically equivalent “LATIN SMALL LETTER A WITH ACUTE” (U+00E1). Such
normalization allows search and other functionality to work despite superficial
differences in user input.

ApplicationSettings

An application settings model stores system-wide application settings. These
settings affect such things as how input is validated, what the morpheme
delimiters are, what the valid grammaticality values are, what the name of the
language being studied is, etc.

Requests to create or update application settings resources must contain a
JSON object of the following form.

{
 "broadPhoneticInventory": "",
 "broadPhoneticValidation": "",
 "grammaticalities": "",
 "inputOrthography": null, // integer id of a valid orthography model, or null or "" if unspecified
 "metalanguageId": "",
 "metalanguageInventory": "",
 "metalanguageName": "",
 "morphemeBreakIsOrthographic": "",
 "morphemeBreakValidation": "",
 "morphemeDelimiters": "",
 "narrowPhoneticInventory": "",
 "narrowPhoneticValidation": "",
 "objectLanguageId": "",
 "objectLanguageName": "",
 "orthographicValidation": "",
 "outputOrthography": null, // integer id of a valid orthography model, or null or "" if unspecified
 "phonemicInventory": "",
 "punctuation": "",
 "storageOrthography": null, // integer id of a valid orthography model, or null or "" if unspecified
 "unrestrictedUsers": [] // array of ids of valid user models, or [] if none are unrestricted
}

Application settings representations returned by the OLD are JSON objects of the
following form.

{
 "broadPhoneticInventory": "",
 "broadPhoneticValidation": "",
 "datetimeModified": "",
 "grammaticalities": "",
 "id": 1,
 "inputOrthography": {}, // object representation of an orthography model
 "metalanguageName": "",
 "metalanguageId": "",
 "metalanguageInventory": "",
 "morphemeBreakIsOrthographic": "",
 "morphemeBreakValidation": "",
 "morphemeDelimiters": "",
 "narrowPhoneticInventory": "",
 "narrowPhoneticValidation": "",
 "objectLanguageId": "",
 "objectLanguageName": "",
 "orthographicValidation": "",
 "outputOrthography": {}, // object representation of an orthography model
 "phonemicInventory": "",
 "punctuation": "",
 "storageOrthography": {}, // object representation of an orthography model
 "unrestrictedUsers": [] // array of objects representing user models
}

broadPhoneticInventory

The value of the broadPhoneticInventory attribute is a comma-delimited
string representing the inventory of graphemes (i.e., single characters or
strings of characters) that should be used to construct broad phonetic
transcriptions, i.e., to construct values for the phoneticTranscription
attribute of form models. The space character should not be included as a
grapheme since the validation functionality will allow it by default.

broadPhoneticValidation

The broadPhoneticValidation attribute determines how or whether the input to
the phoneticTranscription attribute of forms is validated. The permissible
values of the broadPhoneticValidation attribute, as defined in the
validationValues tuple of lib/utils.py, are “Error”, “Warning” and
“None”. If the value is “Error”, then the OLD will not permit a form to be
created or updated if its phoneticTranscription value cannot be
constructed using the graphemes in the broad phonetic inventory plus the space
character. See the Object language validation section for more details.

grammaticalities

The grammaticalities attribute holds a comma-delimited list of
grammaticality values that will be the available options for the
grammaticality attributes of form models and the grammaticality
attributes of translation models. The default value for this field is “*,#,?” as
defined in the generateDefaultApplicationSettings function of
lib/utils.py.

inputOrthography

The inputOrthography is a reference to an existing orthography model object.
An orthography is essentially a list of graphemes (like an inventory) but with
some extra settings (cf. the Orthography section). The
purpose of a system-wide input orthography is to allow for the possibility that
users will enter form transcriptions (and possibly also morpheme segmentations)
using one orthography (i.e., the input orthography) but that these
transcriptions will be translated into another orthography (i.e., the storage
orthography) for storage in the database. When outputing the forms, the system
would then re-translate them from the storage orthography into the output
orthography. Previous OLD applications implemented this orthography conversion
server-side. However, with the new architecture of the OLD >= 1.0 this added
complication seems best implemented client-side as user-specific orthography
conversion. Therefore, the inputOrthography attribute of the
ApplicationSettings model may be removed in future versions of the OLD.

metalanguageId

The value of the metalanguageId attribute is a three-character language Id
from the ISO 639-3 standard which unambiguously identifies the metalanguage
of the application, i.e., the language used in the analysis and documentation of
the object language. The OLD language resources contain the ISO 639-3 data;
that is, requesting GET /languages (or SEARCH /languages,
GET /applicationsettings/new or GET /applicationsettings/edit/id) will
return a JSON array containing all of the languages identified in the ISO 639-3
standard. The default value for the metalanguageId attribute is “eng”.

metalanguageInventory

The value of the metalanguageInventory attribute is a comma-delimited
string representing the inventory of graphemes (i.e., single characters or
strings of characters) that should be used to construct the translations in the
translations attribute of form models. Note that the OLD is not set up to use
the inventory in the metalanguageInventory attribute for validation.

metalanguageName

The value of the metalanguageName is the name of the language that is used
in the analysis (and translation) of the language under study (the object
language). The default value for this attribute is “English”.

morphemeBreakIsOrthographic

The value of the morphemeBreakIsOrthographic attribute controls what
characters the system will expect to find in the values of the morphemeBreak
attribute of forms. If morphemeBreakIsOrthographic is set to “true” (or
“yes”, “on” or “1”), then the system will expect the morphemeBreak value to
be constructed using the graphemes defined in the storageOrthography
attribute; if it is set to “false” (or “no”, “off” or “0”), the system will
expect graphemes from the phonemicInventory in the value of this attribute.

morphemeBreakValidation

The morphemeBreakValidation attribute determines how or whether the input to
the morphemeBreak attribute of forms is validated. The permissible values
of the morphemeBreakValidation attribute, as defined in the
validationValues tuple of lib/utils.py, are “Error”, “Warning” and
“None”. If the value is “Error”, then the OLD will not permit a form to be
created or updated if its morphemeBreak value cannot be constructed using
the graphemes of the relevant orthography/inventory (cf. the
morphemeBreakIsOrthographic attribute) plus the space character. See the
Object language validation section for more details.

morphemeDelimiters

The morphemeDelimiters attribute holds a comma-delimited list of characters
that the system should expect users will employ when segmenting morpheme
transcriptions or morpheme glosses in the morphemeBreak and
morphemeGloss fields, respectively. The default value for this attribute,
as defined in the generateDefaultApplicationSettings function of
lib/utils.py, is “-,=”. If morpheme break validation is enabled, then these
delimiter characters will be permitted in the morphemeBreak values in
addition to the graphemes of the specified orthography/inventory. See the
Object language validation section for more details.

narrowPhoneticInventory

The value of the narrowPhoneticInventory attribute is a comma-delimited
string representing the inventory of graphemes (i.e., single characters or
strings of characters) that should be used to construct narrow phonetic
transcriptions, i.e., to construct values for the
narrowPhoneticTranscription attribute of form models. The space character
should not be included as a grapheme since the validation functionality will
allow it by default.

narrowPhoneticValidation

The narrowPhoneticValidation attribute determines how or whether the input
to the narrowPhoneticTranscription attribute of forms is validated. The
permissible values of the narrowPhoneticValidation attribute, as defined in
the validationValues tuple of lib/utils.py, are “Error”, “Warning” and
“None”. If the value is “Error”, then the OLD will not permit a form to be
created or updated if its narrowPhoneticTranscription value cannot be
constructed using the graphemes in the narrow phonetic inventory plus the space
character. See the Object language validation section for more details.

objectLanguageId

The value of the objectLanguageId attribute is a three-character language Id
from the ISO 639-3 standard which unambiguously identifies the language being
documented using the application, i.e., the object language. The OLD language
resources contain the ISO 639-3 data; that is, requesting GET /languages
(or SEARCH /languages, GET /applicationsettings/new or
GET /applicationsettings/edit/id) will return a JSON array containing all of
the languages identified in the ISO 639-3 standard.

objectLanguageName

The value of the objectLanguageName is the name of the language that is
being documented and analyzed using the OLD web service.

orthographicValidation

The orthographicValidation attribute determines how or whether the input
to the transcription attribute of forms is validated. The permissible
values of the orthographicValidation attribute, as defined in the
validationValues tuple of lib/utils.py, are “Error”, “Warning” and
“None”. If the value is “Error”, then the OLD will not permit a form to be
created or updated if its transcription value cannot be constructed using
the graphemes in the storage orthography plus the space character and the
specified punctuation. See the Object language validation section for
more details.

outputOrthography

The outputOrthography is a reference to an existing orthography model
object. An orthography is essentially a list of graphemes (like an inventory)
but with some extra settings (cf. the Orthography
section). The purpose of a system-wide output orthography is to allow for the
possibility that users will enter form transcriptions (and possibly also
morpheme segmentations) using one orthography (i.e., the input orthography) but
that these transcriptions will be translated into another orthography (i.e., the
storage orthography) for storage in the database. When outputing the forms, the
system would then re-translate them from the storage orthography into the output
orthography. Previous OLD applications implemented this orthography conversion
server-side. However, with the new architecture of the OLD >= 1.0 this added
complication seems best implemented client-side as user-specific orthography
conversion. Therefore, the outputOrthography attribute of the
ApplicationSettings model may be removed in future versions of the OLD.

phonemicInventory

The value of the phonemicInventory attribute is a comma-delimited string
representing the inventory of phonemes that should be used to construct morpheme
segmentations in the morphemeBreak attribute of form resources. See the
Object language validation section for more details on configuring input
validation for the morphemeBreak attribute of forms.

punctuation

The punctuation attribute holds a string representing a list of punctuation
characters. There is no delimiter: each character in the string is considered
a punctuation character. Thus the default value of .,;:!?'"‘’“”[]{}()-
results in the following characters being identified as valid punctuation:
FULL STOP, COMMA, SEMICOLON, COLON, EXCLAMATION MARK, QUESTION MARK, APOSTROPHE,
QUOTATION MARK, LEFT SINGLE QUOTATION MARK, RIGHT SINGLE QUOTATION MARK,
LEFT DOUBLE QUOTATION MARK, RIGHT DOUBLE QUOTATION MARK, LEFT SQUARE BRACKET,
RIGHT SQUARE BRACKET, LEFT CURLY BRACKET, RIGHT CURLY BRACKET, LEFT PARENTHESIS,
RIGHT PARENTHESIS, HYPHEN-MINUS. When orthographic validation is enabled, the
system will allow the punctuation characters specified here to occur in the
values of the transcription attribute of forms.

storageOrthography

The storageOrthography is a reference to an existing orthography model
object. An orthography is essentially a list of graphemes (like an inventory)
but with some extra settings (cf. the Orthography section).
The storage orthography defines the character sequences that should be used to
create form transcription values. If the morphemeBreakIsOrthographic
attribute is set to “true”, then the form morphemeBreak values should also
be constructed out of the graphemes defined in the storageOrthography (plus
the morpheme delimiters specified in morphemeDelimiters). See the
Object language validation section for details on how to configure
orthography/inventory-based validation for form transcription attributes.

The system-wide storage orthography is also a component in an orthography
conversion feature. Orthography conversion allows for the possibility that
users will enter form transcriptions (and possibly also morpheme segmentations)
using one orthography (i.e., the input orthography) but that these
transcriptions will be translated into another orthography (i.e., the storage
orthography) for storage in the database. When outputing the forms, the system
would then re-translate them from the storage orthography into the output
orthography. Previous OLD applications implemented this orthography conversion
server-side. However, with the new architecture of the OLD >= 1.0 this added
complication seems best implemented client-side as user-specific orthography
conversion.

unrestrictedUsers

The unrestrictedUsers attribute is a collection of user models which
identifies the set of users that are to be identified as unrestricted. Such
users are authorized to access restricted form, file and collection resources
while contributors and viewers who are not unrestricted (i.e., who are
restricted) are unable to view (or, a fortiori, update) such resources. See
the Authentication & authorization section for more details on authorization based on the
“restricted” classification.

Collection

OLD collection models are documents that can contain both text (with markup) and
references to form models in their contents attribute. They can be used for
a number of purposes: to create a simple list of forms, to write an academic
paper or a lesson plan, to document a conversation or narrative, etc. The value
of the contents attribute is a document written using one of the lightweight
markup languages reStructuredText or Markdown. OLD collections can embed
other OLD collections via reference. As reStructuredText or MarkDown documents,
they can be converted to HTML and, in the case of collections written using
reStructuredText, they can be converted to (Xe)LaTeX (whence to PDF) and Open
Document Format (i.e., .odt; whence to Word, i.e., .doc).

Collection creation and update requests must contain a JSON object of the
following form.

{
 "contents": "",
 "dateElicited": "",
 "description": "",
 "elicitor": null, // valid user model id or null
 "files": [] // array of valid file model ids or []
 "markupLanguage": "",
 "source": null, // valid source model id or null
 "speaker": null, // valid speaker model id or null
 "tags": [], // array of valid tag model ids or []
 "title": "My Collection",
 "type": "",
 "url": "",
}

Collection representations returned by the OLD are JSON objects of the following
form.

{
 "contents": "",
 "contentsUnpacked": "",
 "dateElicited": "",
 "datetimeEntered": "",
 "datetimeModified": "",
 "description": "",
 "elicitor": null, // an object representation of a user or null
 "enterer": { ... }, // an object representation of a user
 "files": [], // an array of object representations of files or []
 "forms": [], // an array of object representations of forms or []
 "html": "",
 "id": 1,
 "markupLanguage": "",
 "source": null, // an object representation of a source or null
 "speaker": null, // an object representation of a speaker or null
 "tags": [], // an array of object representations of tags or []
 "title": "",
 "type": "",
 "url": "",
 "UUID": ""
}

contents

The value of the contents attribute is a string that constitutes the content
of the collection. If markup is used, it should be the markup specified in the
markupLanguage attribute.

The value of this attribute can contain references to form models in the
database. These references are strings like form[136] or Form[136],
i.e., the string “form” or “Form”, followed by a left bracket “[”, followed by
a valid form model id, followed by a right bracket “]”. The reference
“form[136]” would result in the form with id 136 being associated to the
collection, i.e., collection.forms would contain that form.

Note that the value of the contents attribute need not contain any markup
or other text. That is, it may simply be a string consisting of references to
forms.

Here is an example of a well-formed contents value that uses the MarkDown
markup language and contains a reference to the form with id 136:

Chapter 2
=========

Section containing a list

* Item 1
* Item 2

Section containing forms

form[136]

It is also possible to reference another collection within the value of the
contents attribute. This causes the contents of first collection to behave
as though it contained the contents of the referenced collection in its contents
value at the point of reference. For example, consider collection C2 below
which references collection C1 (with id 3) from above.

Chapter 1
=========

Section containing prose

Blah blah pied piping ... blah blah.

Section containing forms

form[135]

collection[3]

When collection C2 is created, the collections controller will generate
the following value for contentsUnpacked:

Chapter 1
=========

Section containing prose

Blah blah pied piping ... blah blah.

Section containing forms

form[135]

Chapter 2
=========

Section containing a list

* Item 1
* Item 2

Section containing forms

form[136]

The above contentsUnpacked value will be used to extract the form references
of the collection and to generate the value of the html attribute. That is,
collection C2 will be associated to forms 135 and 136. Note that
collection-collection references can be nested, i.e., collections can reference
collections which reference other collections, etc.

contentsUnpacked

The value of the contentsUnpacked attribute is the value of the contents
attribute when all of its collection references are replaced with the contents
of the collections referred to. These referred-to collections can refer to
others in turn and all such references are replaced by the appropriate
contents values. The form models associated to a collection are calculated
by gathering all of the form references in the value of the contentsUnpacked
attribute.

A result of collection-to-collection referencing is that the contents and
forms values of a collection may be altered by updates to other collections.
The forms controller handles this by calling
updateCollectionsThatReferenceThisCollection upon successful update
requests.

dateElicited

The dateElicited attribute is a user-supplied date value which indicates the
date when the collection was elicited. The date must be in mm/dd/yyyy format.
This is applicable to collections that represent records of events, e.g.,
elicitation sessions, recordings of stories, etc.

datetimeEntered

The value of the datetimeEntered attribute is a UTC timestamp generated by
the system when a collection is created. Note that this value is distinct from
the datetimeModified attribute that is common to all model types since that
value is generated upon creation and update requests while the
datetimeEntered value is only generated upon creation requests and is not
altered thereafter.

description

The value of the description attribute is a user-supplied string that
describes the collection.

elicitor

The elicitor attribute references a valid user model who is the elicitor of
the collection. This attribute may not be appropriate for all collection types.

enterer

The enterer attribute references the user model whose account was used to
create the collection. This value is generated automatically by the system upon
collection creation.

files

A collection may be associated to zero or more files via the files attribute
which references a collection [6] of file models. Files are OLD objects that
represent a binary file (e.g., an audio, video or image file) along with
metadata. An example use case would be a collection that represents an
elicitation session and which is associated to one or more files whose file data
are large audio recordings of the session. See the File
section for details on the structure of file models.

forms

A collection may be associated to zero or more forms. These are stored in the
forms attribute, which references a collection of form models. Whereas
files are associated to an OLD collection by specifying an array of file ids
in the files attribute of the JSON object passed to collection create/update
requests, forms are associated indirectly, that is by being referenced in the
value of the contents attribute of the collection (cf. the
contents section).

html

The value of the html attribute is a string of HTML that is generated by the
system using the value of the contentsUnpacked attribute and the
markup-to-HTML function corresponding to the markup language specified in the
markupLanguage attribute. Note that while the HTML could be generated in
the user-facing application, there is not, to my knowledge, a JavaScript
implementation of the reStructuredText markup-to-HTML algorithm; therefore the
HTML generation is performed server-side. Note also that form references are
left as-is, which is to say that no HTML representation of the form data is
generated. This is left as a task for the user-facing application since
applications will have their own method(s) of displaying forms.

markupLanguage

The value of the markupLanguage attribute is one of “Markdown” or
“reStructuredText” as defined in the markupLanguages variable of
lib/utils.py. Markdown and reStructuredText are lightweight markup
languages. A lightweight markup language is a markup language (i.e., a system
for annotating a document) that is designed to be easy to read in its raw form.
If no value is specified, “reStructuredText” will be the default.

source

The source attribute references a valid source model that indicates the
textual (or other) source of the collection. This is useful for when the
content of a collection is taken from another document and that fact needs to be
attributed. The structure of the source model is based on the BibTeX format.
See the Source section for details.

speaker

The speaker attribute references a valid speaker model who is the speaker or
consultant of the collection. As with attributes like elicitor, the
speaker attribute may not be appropriate for all collection types.

tags

A collection may be associated to zero or more tags and these associations are
stored in the tags attribute. Tags are user-defined models that can be used
to arbitrarily categorize other OLD models. If a collection is to be
restricted, the special “restricted” tag should be associated to it. See the
Tag section for details.

title

The value of the title attribute is a string that is the title of the
collection. All collections must have a title and no title may exceed 255
characters.

type

The value of the type attribute is used to classify the collection and may
affect how it is displayed or exported. The permitted values, as defined in
collectionTypes in lib/utils.py, are “story”, “elicitation”, “paper”,
“discourse” and “other”. If no value is specified, null is the default.

url

The value of the url attribute is not actually a valid URL but something
more akin to the path component of a URL. That is, it is a string composed of
any of the 26 letters of the English alphabet (including uppercase versions),
the underscore “_”, the forward slash “/” and the hyphen “-”. The url value
must not exceed 255 characters. At present the OLD qua web service does not
make use of this attribute. However, it may be used by a user-facing
application to allow users to navigate to a specific collection using something
more meaningful than an integer id. For example, on a web application front-end
to an OLD web service with the URL http://www.xyz-old.org, one might
navigate to a representation of the collection entitled “Magnum Opus” by
entering http://www.xyz-old.org/magnum_opus in the address bar (where
“magnum_opus” is the value of the url attribute.)

UUID

The value of the UUID attribute is a universally unique identifier (UUID),
i.e., a number represented by 32 hexadecimal digits displayed in five groups
using four hyphens. A valid UUID is a 36-character string that looks like
aba3ea8d-b56f-4934-a8f7-68cba500f411. The collections controller (i.e,
oldcollections) randomly generates a UUID value for each newly created
collection model. These values are used to associate collection backups to the
collections they backup.

CollectionBackup

A collection backup model is created whenever a collection model is updated or
deleted. These models cannot be created directly, i.e.,
POST /collectionbackups is not a valid request. The collection backup model
receives all of the attributes of the model that it backs up. It also has some
additional attributes, viz. collection_id and backuper. The value of
the collection_id attribute is the value of the id attribute of the
collection that was backed up to create the present collection backup model.
The value of the backuper attribute is a JSON object representing the user
who created the backup (by deleting or updating the collection). In general,
the values of the relational attributes of the collection (i.e., the attributes
that refer to other models) are converted to JSON object representations in the
collection backup model. For example, the value of the speaker attribute is
such a JSON object and the value of the files attribute is a JSON array of
such objects representing file models. Since form models have many attributes
and since collection models will, typically, be associated to many form models,
the forms attribute of a collection backup model is simply a JSON array of
form id values. If the collection has just been deleted, then the value of
the datetimeModified value of the collection backup will be the UTC
datetime at the time of deletion.

Collection backup representations returned by the OLD are JSON objects of the
following form.

{
 "backuper": { ... } // an object representation of a user
 "collection_id": 1
 "contents": "",
 "contentsUnpacked": "",
 "dateElicited": "",
 "datetimeEntered": "",
 "datetimeModified": "",
 "description": "",
 "elicitor": null, // an object representation of a user or null
 "enterer": { ... }, // an object representation of a user
 "files": [], // an array of object representations of files
 "forms": [], // an array of object representations of forms
 "html": "",
 "id": 1,
 "markupLanguage": "",
 "source": null, // an object representation of a source or null
 "speaker": null, // an object representation of a speaker or null
 "tags": [], // an array of object representations of tags
 "title": "",
 "type": "",
 "url": "",
 "UUID": ""
}

ElicitationMethod

Elicitation method objects represent a set of tags for categorizing the way in
which a form was elicited. For example, sometimes a researcher asks a
consultant “How do you say ‘Every man loves a woman.’?” An elicitation method
used to categorize forms elicited in this way might have a name value of
“translated English”. Sometimes a researcher asks a consultant “Does this sound
like a good sentence: ‘Il y a une femme que tous les hommes aiment.’?” The
elicitation method for such forms might have a name of “judged object language
utterance of researcher”.

Elicitation method creation and update requests must contain a JSON object of
the following form.

{
 "description": "",
 "name": ""
}

Elicitation method representations returned by the OLD are JSON objects of the
following form.

{
 "datetimeModified": "",
 "description": "",
 "id": 1,
 "name": ""
}

description

The value of the description attribute is a user-supplied string that
describes the elicitation method and (perhaps) provides guidance on its use.

name

The value of the name attribute is an obligatory, user-supplied string of
no more than 255 characters which must be unique among all other elicitation
method names.

File

OLD file model objects are binary files with metadata. From the language
researcher’s point of view, they are the audio/video recordings of linguistic
fieldwork as well as image, audio or video files that may be used to elicit
speech or even the documents (such as PDFs of handouts or pedagogical materials)
that are in some way related to language data.

There are three types of file models and while each share a common core of
metadata-related attributes, they have attributes unique to their type as well.
Local files are stored on the filesystem (by default, in the files/
directory) of the machine serving an OLD applicaton. Subinterval-referencing
files get their file content from a local audio/video file (their
parentFile) and have start and end attributes which reference start
and end positions in the parent file. Externally hosted files have content
stored on another server and have url attributes for locating that content.
The form of the input passed with create requests will determine which type of
file model is created. Whatever the type of file being created, the URL and HTTP
method for such requests remains the same, i.e., POST /files.

When creating a local OLD file, it is necessary to upload a binary file to the
OLD.[5] The traditional way of doing this in web applications is to
specify the Content-Type of the HTTP request as multipart/form-data and
pass the binary file data in the body of the request in a special format. When
using this method, additional parameters are restricted to simple name-value
pairs – hierarchical JSON objects are not permitted. Therefore, when one is
using the multipart/form-data approach and when the file ought to be
associated to multiple tag or form models, the parameter names should make use
of the following convention: <attribute_name>-<index>. That is, to associate
the tags with id values 2 and 36 to a file one is creating, the body of the
request should contain a parameter named “tags-0” with a value of “2” and
another parameter named “tags-1” with a value of “36”. Similarly, associating
a new file to multiple forms using the multipart/form-data approach will
require parameter names like “forms-0”, “forms-1”, “forms-2”, etc. When using
this approach, at least the following set of parameters must be included.

	Parameter name
	Comments

	filename
	required

	dateElicited
	format mm/dd/yyyy

	description
	possibly empty string describing the file

	elicitor
	id of a valid elicitor model, or empty string

	forms-0
	id of a valid form model, or empty string

	speaker
	id of a valid speaker model, or empty string

	tags-0
	id of a valid tag model, or empty string

	utteranceType
	one of the allowed utterance types

The other way of creating a local OLD file is to set the Content-Type of the
request to application/json and send all input as a JSON object, as is done
with all other creation and update requests to an OLD web service. Under this
approach, the binary file is converted to a string using
Base64 encoding [http://en.wikipedia.org/wiki/Base64] and that string is the
value of the base64EncodedFile attribute of the JSON object passed in the
request body. Because it is inefficient to Base64-encode large files on the
client and then decode them in memory on the server, requests to POST /files
with a request body that is greater than 20MB [4] will be rejected with a 400
error code. File creation requests for local files using the
application/json content type must contain a JSON object of the following
form.

{
 "base64EncodedFile": ""
 "dateElicited": "",
 "description": "",
 "elicitor": null, // valid user model id or null
 "filename": "",
 "forms": [], // array of valid form model ids or []
 "speaker": null, // valid speaker model id or null
 "tags": [], // array of valid tag model ids or []
 "utteranceType": "",
}

Note that once a local file model has been created the value of its filename
attribute cannot be changed, nor can its file data. That is, requests to
PUT /files should contain an object just like that presented above except
that the base64EncodedFile and filename attributes ought to be removed
as they will simply be ignored by the controller handling the request. In
contrast, when requesting an update to an externally hosted or
subinterval-referencing file, the input object may contain new values for all of
the attributes permitted on create requests (see below).

Requests to create subinterval-referencing files are identified by the presence
of a parentFile attribute in the request parameters. Creation requests for
these types of files must contain a JSON object in the body of the request of
the following form.

{
 "dateElicited": "",
 "description": "",
 "elicitor": null, // valid user model id or null
 "end": 4.7, // integer or float representing the end of the interval in seconds
 "filename": "",
 "forms": [], // array of valid form model ids or []
 "name": "",
 "parentFile": 1, // valid id of a local OLD audio/video file
 "speaker": null, // valid speaker model id or null
 "start": 3.5, // integer or float representing the start of the interval in seconds
 "tags": [], // array of valid tag model ids or []
 "utteranceType": "",
}

Requests to create externally hosted files are identified by the presence of a
url attribute in the request parameters. Creation requests for these types
of files must contain a JSON object in the body of the request of the following
form.

{
 "dateElicited": "",
 "description": "",
 "elicitor": null, // valid user model id or null
 "filename": "",
 "forms": [], // array of valid form model ids or []
 "MIMEtype": "",
 "name": "",
 "parentFile": 1, // valid id of a local OLD file
 "password": "",
 "speaker": null, // valid speaker model id or null
 "tags": [], // array of valid tag model ids or []
 "url": "http://vimeo.com/13452",
 "utteranceType": "",
}

File representations returned by the OLD are JSON objects of the following form.

{
 "dateElicited": "",
 "datetimeEntered": "",
 "datetimeModified": "",
 "description": "",
 "elicitor": null, // integer id of a valid user model
 "end": null, // number or null
 "enterer": 1, // integer id of a valid user model
 "filename": "",
 "forms": [], // array of valid ids of form models
 "id": 1,
 "lossyFilename": "",
 "MIMEtype": "",
 "name": "",
 "parentFile": null, // integer id of a valid (audio/video) file model
 "password": "",
 "size": null, // integer representing the size of the file in bytes
 "speaker": null, // integer id of a valid speaker model
 "start": null, // number or null
 "tags": [], // array of valid ids of tag models
 "url": "",
 "utteranceType": ""
}

dateElicited

The dateElicited attribute is a user-supplied date value which indicates the
date when the file was elicited, if applicable, e.g., when a recording of an
elicitation was made. The date must be in mm/dd/yyyy format.

datetimeEntered

The value of the datetimeEntered attribute is a UTC timestamp generated by
the system when a file is created. Note that this value is distinct from the
datetimeModified attribute that is common to all model types since that
value is generated upon creation and update requests while the
datetimeEntered value is only generated upon creation requests and is not
altered thereafter.

description

The value of the description attribute is a user-supplied string that
describes the file.

elicitor

The elicitor attribute references a valid user model who is the elicitor of
the file, if applicable.

end

The value of the end attribute is a number (integer or float) representing
the end of the subinterval in seconds of a subinterval-referencing file. For
example, consider the subinterval-referencing file F2 which references the
audio file F1 as its parent file. A value of 3.7 for the end attribute of
F1 means that the content of F1 is a portion of the audio file of F2 which
ends at 3.7 seconds. Note that only subinterval-referencing files should have
values for the end attribute.

enterer

The enterer attribute references the user model whose account was used to
create the file. This value is generated automatically by the system upon file
creation.

filename

The filename attribute holds the name of the file as it is stored in the
filesystem. When a local file is created, a non-empty filename value must
be provided in the input parameters. While unicode (i.e., non-ASCII) characters
are permitted in the filename value, the system removes certain characters
(QUOTATION MARK (”), APOSTROPHE (‘), the path separator (/ on Unix systems) and
the null byte) and replaces spaces with underscores. If a file with the
resulting name already exists in the directory that holds local file data (the
files/ directory by default), then the system will alter the name (by
inserting an underscore followed by a string of eight random characters between
the end of the file name and its extension) until a unique one is found. The
resulting string becomes the value of the filename attribute. So, for
example, if a file create request contains “john’s file.wav” as the value of the
filename parameter and if files/johns_file.wav already exists, then the
file data will be saved to something like files/johns_file_3Df6Nop0.wav and
the value of the filename attribute of the file model will be
“johns_file_3Df6Nop0.wav”.

forms

A file model may be associated to zero or more forms. On file create and update
requests, associated forms are specified by providing an array of valid form ids
as the value of the forms attribute. When JSON object representations of
file models are returned, the value of the forms attribute is an array of
JSON objects representing the associated forms.

lossyFilename

If the OLD is configured to create reduced-size copies of uploaded files and if
the requisite dependencies are installed (i.e., PIL or FFmpeg), then the system
will create reduced-size (i.e., lossy) copies of the files in
files/reduced_files/ and the lossyFilename attribute will return the
name of the reduced-size copy in that directory. For example, if in the config
file create_reduced_size_file_copies is set to “1” and
preferred_lossy_audio_format is set to “ogg” and if FFmpeg is installed,
then a WAV file uploaded and saved to files/my_file.wav will have a lossy
copy in files/reduced_files/my_file.ogg and the value of lossyFilename
will be “my_file.ogg”.

MIMEtype

MIMEtypes, also known as Internet Media Types, are standardized strings used to
categorize types of binary files. An OLD web service will ascertain the
MIMEtype of an uploaded file using the python-magic module and the contents of
the file. If the MIMEtype is in the list of allowed MIMEtypes (as defined in
allowedFileTypes of lib/utils.py), then the value of the MIMEtype
attribute will be assigned to the ascertained MIMEtype string. The valid
MIME/Internet Media types are listed in the table below.

	Internet media type
	Common extension(s)
	Name

	application/pdf
	.pdf
	Portable Document Format

	image/gif
	.gif
	GIF image

	image/jpeg
	.jpg, jpeg
	JPEG JFIF image

	image/png
	.png
	Portable Network Graphics

	audio/mpeg
	.mp3
	MP3 or other MPEG audio

	audio/ogg
	.ogg
	Ogg Vorbis, Speex, Flac and other audio

	audio/x-wav
	.wav, .wave
	WAV audio

	video/mpeg
	.mpeg
	MPEG-1 video with multiplexed audio

	video/mp4
	.mp4
	MP4 video

	video/ogg
	.ogg, .ogv
	Ogg Theora or other video (with audio)

	video/quicktime
	.mov, .qt
	QuickTime video

	video/x-ms-wmv
	.wmv
	Windows Media Video

name

Externally hosted and subinterval-referencing files may supply a value for the
name attribute. Since these types of files do not have values for the
filename attribute, the name attribute can be useful in identifying
them. For local files the system automatically sets the name attribute to
the value of the filename attribute. If a subinterval-referencing file
creation request does not include a non-empty name value, then the value
assigned to that attribute is the value of the filename attribute of the
subinterval-referencing file’s parent file.

parentFile

Subinterval-referencing files are identified by possession of a non-empty
parentFile attribute. The value of this attribute is a reference to an
existing local file. The parent file must be an audio or video file. The
subinterval-referencing file gets its file data from its parent file.

password

The password attribute can be specified for externally hosted file models
that require a password in order for the external host to serve the file. Note
that this value will be available to all users of the system and should not
therefore be a password used for other purposes, e.g., to log in to the OLD web
service itself.

size

Local file models have a value for the size attribute which is an integer
representing the size of the binary file in bytes. This is calculated upon a
successful file creation request.

speaker

The speaker attribute references a valid speaker model who is the speaker or
consultant of the file. This is appropriate in cases where the file is, say,
an audio recording of a speaker telling a story or a recording of an
elicitation session with a particular consultant.

start

The value of the start attribute is a number (integer or float) representing
the beginning of the subinterval in seconds of a subinterval-referencing file.
For example, consider the subinterval-referencing file F2 which references the
audio file F1 as its parent file. A value of 2.1 for the start attribute
of F1 means that the content of F1 is a portion of the audio file of F2
begins at 2.1 seconds. Note that only subinterval-referencing files should have
values for the start attribute.

tags

A file may be associated to zero or more tags. Tags are user-defined models
that can be used to arbitrarily categorize other OLD models. If a file is to be
restricted, then the special “restricted” tag should be associated to id. See
the Tag section for more details on the tag model.

url

Externally hosted files are identified by possession of a non-empty value for
the url attribute. The value should be a valid URL that will serve the
content of the file when requested. This value will allow user-facing
applications to display (i.e., embed) the file content of externally hosted
file models.

utteranceType

Files that represent recordings of utterances should be categorized using the
utteranceType attribute. Valid values, as defined in the utteranceTypes
tuple of lib/utils.py are “None”, “Object Language Utterance”, “Metalanguage
Utterance” and “Mixed Utterance”. If the value of this attribute on input is an
empty string or null, then its value will be null.

Here is a potential use case scenario for this attribute. Consider an OLD web
service that is being used to study the Blackfoot language and imagine a file
model F1 whose binary data is a WAV file audio recording of a speaker saying
“oki”, which means “hello” in Blackfoot. Now imagine a second file, F2 whose
binary data is another WAV file recording of the speaker saying “hello”. Assume
that the utteranceType value of F1 is “Object Language Utterance” (since
it is a recording of an utterance of the object language, i.e., Blackfoot) and
assume that the utteranceType value of F2 is “Metalanguage Utterance”
(since it is a recording of an utterance in the language of analysis and
translation, i.e., English). Now imagine a form F whose transcription is
“oki” and whose only translation is “hello” and which is associated to files
F1 and F2. If there are a good number of forms like F, then an
application making use of this OLD web service would be able to reasonably
assume that F1, being an object language utterance associated to F is a
recording of a speaker uttering the linguistic form that is transcribed in F.
Such an application could then use such forms to automatically generate
audio/textual language learning games or talking dictionaries.

Form

An OLD form model represents a linguistic form in a very general sense; that is,
it can represent a lexical item abstracted from any elicitation or recording
event as well as a word, phrase or sentence uttered on a particular occasion
by a particular speaker.

Form creation and update requests must contain a JSON object of the following
form.

{
 "comments": "",
 "dateElicited": "" // string of the form mm/dd/yyyy
 "elicitationMethod": null, // valid elicitation method model id or null
 "elicitor": null, // valid user model id or null
 "files": [], // array of valid file model ids or []
 "translations": [{"transcription": "hello", "grammaticality": ""}],
 "grammaticality": "",
 "morphemeBreak": "",
 "morphemeGloss": "",
 "narrowPhoneticTranscription": "",
 "phoneticTranscription": "",
 "source": null, // valid source model id or null
 "speaker": null, // valid speaker model id or null
 "speakerComments": "",
 "status": "",
 "syntacticCategory": null, // valid syntactic category model id or null
 "tags": [], // array of valid tag model ids or []
 "transcription": "oki",
 "verifier": null // valid user model id or null
}

Forms representations returned by the OLD are JSON objects of the following form.

{
 "breakGlossCategory": "",
 "comments": "",
 "dateElicited": "",
 "datetimeEntered": "", // system-generated ISO 8601-formatted datetime
 "datetimeModified": "", // system-generated ISO 8601-formatted datetime
 "elicitationMethod": null, // an object representation of an elicitation method or null
 "elicitor": null, // an object representation of a user or null
 "enterer": { ... }, // an object representation of a user
 "files": [], // an array of object representations of files or []
 "translations": [{...}], // an array of object representations of translations
 "grammaticality": "",
 "id": 1, // the integer id assigned by the database
 "morphemeBreak": "",
 "morphemeBreakIDs": null, // an array or null
 "morphemeGloss": "",
 "morphemeGlossIDs": null, // an array or null
 "narrowPhoneticTranscription": "",
 "phoneticTranscription": "",
 "source": null, // an object representation of a source or null
 "speakerComments": "",
 "speaker": null, // an object representation of a speaker or null
 "status": "",
 "syntacticCategory": null, // an object representation of a syntactic category or null
 "syntacticCategoryString": "",
 "tags": [], // an array of object representations of tags or []
 "transcription": "bonjour",
 "UUID": "1025b514-5781-4dce-8715-8c2590119546", // generated by the system
 "verifier": null, // an object representation of a user or null
}

breakGlossCategory

The breakGlossCategory attribute stores a system-generated string which
merges the values of the morphemeBreak, morphemeGloss and
syntacticCategoryString attributes. For example, the breakGlossCategory
value of a form with “chien-s” as its morpheme segmentation, “dog-PL” as its
morpheme gloss string and “N-Num” as its syntactic category would be
“chien|dog|N-s|PL|Num”. Since the breakGlossCategory value is searchable,
it can be used to filter forms according to presence/absence of a specific
morpheme. See the Morphological processing section for details on the
structure of this value and its method of generation.

collections

A form may be associated to zero or more collections. Collections are documents
that typically reference, and are associated to, multiple forms. Note
that such associations are not created during form creation or updating but
during collection creation. See the Collection section
for details.

comments

The comments attribute is an open-ended field that may contain any comments
about the form or any data that do not fit neatly into the standard attributes
of the form resource. If multiple forms are to be tagged or classified in some
way, it is better to use the tags attribute for this purpose and not the
comments attribute.

dateElicited

The dateElicited attribute is a user-supplied date value which indicates the
date when the form was elicited. The date must be in mm/dd/yyyy format. For
abstract lexical forms this value may not be appropriate.

datetimeEntered

The value of the datetimeEntered attribute is a UTC timestamp generated by
the system when a form is created. Note that this value is distinct from the
datetimeModified attribute that is common to all model types since that
value is generated upon creation and update requests while the
datetimeEntered value is only generated upon creation requests and is not
altered thereafter.

elicitationMethod

The elicitationMethod attribute references a valid elicitation method model
that classifies the way in which the form was elicited. See the
ElicitationMethod section for details.

elicitor

The elicitor attribute references a valid user model who is the elicitor of
the form.

enterer

The enterer attribute references the user model whose account was used to
enter the form. This value is generated automatically by the system upon form
creation.

files

A form may be associated to zero or more files via the files attribute which
references a collection of file models. Files are OLD objects that represent a
binary file (e.g., an audio, video or image file) along with metadata (e.g., a
description or the size of the file). See the File
section for details on the structure of file models. To associate a form to
files upon form create/update requests, pass an array of valid file ids as the
value of the files attribute of the input object. When a form is output by
an OLD application, the value of the files attribute of the output object
will be an array containing JSON object representations of any associated file
models.

translations

A form model must have at least one translation but may have more. The
translations of a form are each translation model objects that are listed in the
translations attribute of the form. (In the relational database schema, the
form and translation tables are in a one-to-many relationship.) Forms
with multiple translations, e.g., sentences with multiple valid translations,
should use separate translation models for each such translation. Translation
models can also have grammaticalities (cf. the grammaticality attribute) –
this feature may be used to indicate a translation that is not appropriate to a
grammatical form. Thus, as a simplistic example, “chien” may be translationed
as “dog” and “*wolf” using two translation models.

grammaticality

The grammaticality attribute stores the grammaticality value assigned to the
form. This is a forced-choice attribute whose options are defined by the users
of the system in the grammaticalities attribute of the active application
settings resource. Usually, the available grammaticalities will be a list such
as “*”, ”?”, “#”, “**”, etc.

memorizers

The memorizers attribute holds a collection of zero or more user models
corresponding to the users who have memorized, or remembered, this form. See
the section on the remembered forms resource (Remembered forms)
for details on how memorize a form.

morphemeBreak

The morphemeBreak attribute holds a representation of the morphological
analysis of a linguistic form, i.e., a morphemic segmentation. Maximum length
is 255 characters. The system will expect words to be split by whitespace and
morphemes by the delimiters specified in the morphemeDelimiters attribute of
the active application settings. By specifying appropriate values for the
morphemeBreakValidation, morphemeBreakIsOrthographic and
phonemicInventory or storageOrthography attributes of the active
application settings resource, it is possible to ensure that data input to this
attribute are validated against the specified orthography/inventory and
delimiters.

morphemeBreakIDs

The value of the morphemeBreakIDs attribute is a system-generated JSON array
that contains references to all matches found for each morpheme listed in the
morphemeBreak attribute. See the Morphological processing section
for details on the structure of this value and its method of generation.

morphemeGloss

The morphemeGloss attribute holds a string of morpheme glosses corresponding
to the phonemic representations stored in the morphemeBreak field. Maximum
length is 255 characters. As with the morphemeBreak field, the gloss “words”
in this field should be delimited using whitespace and the glosses within words
should be delimited using the specified morpheme delimiters.

morphemeGlossIDs

The value of the morphemeGlossIDs attribute is a system-generated JSON array
that contains references to all matches found for each morpheme gloss listed in
the morphemeGloss attribute. See the Morphological processing
section for details on the structure of this value and its method of generation.

narrowPhoneticTranscription

The narrowhoneticTranscription attribute holds a narrow phonetic
transcription of the linguistic form. Maximum length is 255 characters. By
specifying a value for the narrowPhoneticInventory attribute of the active
application settings and setting that same resource’s
narrowPhoneticValidation attribute to “Error”, it is possible to configure
narrowhoneticTranscription validation so that values not generable using the
specified inventory are rejected. See Object language validation.

phoneticTranscription

The phoneticTranscription attribute holds a phonetic transcription of the
linguistic form. By convention, this is a broad phonetic transcription.
Maximum length is 255 characters. By specifying a value for the
broadPhoneticInventory attribute of the active application settings and
setting that same resource’s broadPhoneticValidation attribute to “Error”,
it is possible to configure phoneticTranscription validation so that values
not generable using the specified inventory are rejected. See
Object language validation.

semantics

The value of the semantics attribute is canonically a semantic
representation of the form, e.g., a denotation. Maximum length is 1023
characters. At some future point candidate values for this attribute may be
auto-generated.

source

The source attribute references a valid source model that indicates the
textual (or other) source of the form. This is useful for when data are taken
from papers or dictionaries and need to be attributed. The source model is
based on the BibTeX format. See the Source section for
details.

speaker

The speaker attribute references a valid speaker model who is the speaker or
consultant of the form.

speakerComments

The speakerComments attribute holds comments made about the form by the
speaker or consultant.

status

The status attribute encodes the status of the form with respect to its
verification. At present, the two licit values are “tested” and “requires
testing”. Usage of this attribute permits researchers to enter forms not yet
tested in order to prepare for a planned elicitation session.

syntacticCategory

The syntacticCategory attribute references a valid syntactic category model
that categorizes the form. For example, a form like “chien” might have a
syntacticCategory value which references a syntactic category model whose
name attribute is “N”. See the SyntacticCategory
section for details.

syntacticCategoryString

The syntacticCategoryString attribute holds a system-generated value which
is a string of syntactic category names corresponding to the morphemes specified
by the creator/updater of the form. That is, the system inspects the values of
the morhemeBreak and morphemeGloss fields and searches the database for
matches to the specified morpheme/gloss pairs; the names of the syntactic
categories of the matches are used to generate the value for the
syntacticCategoryString attribute. By searching forms based on patterns in
this field it is possible to filter the database according to higher-level
morphological or syntactic patterns. See the Morphological processing
section for further details on how this value is generated.

syntax

The value of the syntax attribute is canonically a syntactic representation
of the form, e.g., a phrase structure tree in bracket notation. Maximum length
is 1023 characters. At some future point candidate values for this attribute
may be auto-generated.

tags

A form may be associated to zero or more tags. Tags are user-defined models
that can be used to arbitrarily categorize other OLD models. An example usage
would be to define a tag model with a name value of “VP ellipsis” and use
that tag to categorize forms that exhibit the phenomenon. If a form is to be
restricted, then the special “restricted” tag should be associated to it;
similarly, if the form documents a foreign word, then it should be associated to
the special “foreign word” tag. See the Tag section for
more details on the tag model.

transcription

The transcription attribute holds transcriptions of linguistic forms. By
convention, these are expected to be written in an orthography of the object
language. Maximum length is 255 characters. Every form must have a
transcription. It is possible to specify a storage orthography in the active
application settings resource and configure form transcription validation so
that values not generable using the orthography are rejected. See
Object language validation for details.

UUID

The value of the UUID attribute is a universally unique identifier (UUID),
i.e., a number represented by 32 hexadecimal digits displayed in five groups
using four hyphens. A valid UUID is a 36-character string that looks like
aba3ea8d-b56f-4934-a8f7-68cba500f411. The forms controller randomly
generates a UUID value for each newly created form model. These values are used
to associate form backups to the forms they backup.

verifier

The verifier attribute references a valid user model who has verified the
form. This is useful, for example, in a case where one researcher finds that a
form they have elicited has already been stored in the database and they do not
want to record a duplicate entry. Oftentimes, however, it is desirable to enter
a duplicate entry.

FormBackup

A form backup model is created whenever a form model is updated or deleted.
These models cannot be created directly, i.e., POST /formbackups is not a
valid request. The form backup model receives all of the attributes of the
model that it backs up. It also has some additional attributes, viz.
form_id and backuper. The value of the form_id attribute is the
value of the id attribute of the form that was backed up to create the
present form backup model. The value of the backuper attribute is a JSON
object representing the user who created the backup (by deleting or updating the
form). In general, the values of the relational attributes of the form (i.e.,
the attributes that refer to other models) are converted to JSON object
representations in the form backup model. For example, the value of the
speaker attribute is such a JSON object and the value of the files
attribute is a JSON array of such objects representing file models. If the form
has just been deleted, then the value of the datetimeModified value of the
form backup will be the UTC datetime at which the backup occurred.

Form backup representations returned by the OLD are JSON objects of the
following form.

{
 "backuper": null, // an object representation of an elicitation method or null
 "breakGlossCategory": "",
 "comments": "",
 "dateElicited": "",
 "datetimeEntered": "",
 "datetimeModified": "",
 "elicitationMethod": null, // an object representation of an elicitation method or null
 "elicitor": null, // an object representation of an elicitation method or null
 "enterer": null, // an object representation of an elicitation method or null
 "files": [], // an array of objects representing file models or []
 "form_id": 1,
 "translations": [], // an array of objects representing translation models or []
 "grammaticality": "",
 "id": 1,
 "morphemeBreak": "",
 "morphemeBreakIDs": null, // an array or null
 "morphemeGloss": "",
 "morphemeGlossIDs": null, // an array or null
 "narrowPhoneticTranscription": "",
 "phoneticTranscription": "",
 "source": null, // an object representation of an elicitation method or null
 "speaker": null, // an object representation of an elicitation method or null
 "speakerComments": "",
 "syntacticCategory": null, // an object representation of an elicitation method or null
 "syntacticCategoryString": ""
 "tags": [], // an array of objects representing tag models or []
 "transcription": "",
 "UUID": "",
 "verifier": null, // an object representation of an elicitation method or null
}

FormSearch

The form search model stores searches on form resources so that these searches
can be saved for later use and shared with other users of the system.

Requests to create or update application settings resources must contain a
JSON object of the following form.

{
 "description": u"",
 "name": u"returns all transitive verbs", // obligatory string
 "search": {...}, // an object representing an OLD form query
}

Form search representations returned by the OLD are JSON objects of the
following form.

{
 "datetimeModified": "",
 "description": "",
 "id": 1,
 "name": "returns all transitive verbs",
 "search": { ... }, // an object representing an OLD form query
 "searcher": { ... } // object representation of a user model
}

description

The value of the description attribute is a user-supplied string that
describes the search resource.

name

The value of the name attribute is a user-supplied string used to identify
the search resource. Names are obligatory, may not exceed 255 characters and no
two searches may have the same name.

search

The value of the search attribute is the JSON object representing the
search. If the user-supplied search object is not well-formed, the system will
prevent the form search resource from being created or updated. The search
object is an object with an obligatory filter attribute and an optional
orderBy attribute (see below). The values of both of these attributes are
arrays. The definitions of what constitutes well-formed “filter” and “orderBy”
arrays are provided in the Search section.

{
 "filter": [...],
 "orderBy": [...]
}

searcher

The searcher attribute references the user model whose account was used to
create the form search. This value is generated automatically by the system
upon form search creation.

Translation

Translations are translations of forms into the metalanguage. A form model can
have multiple translations and each of these translations is a translation
model. Each translation model has transcription and grammaticality
attributes. In relational database terminology, the form and translation tables
are in a one-to-many relationship; that is, a form may have many translations
but each translation has one and only one form. When a form is deleted, so too
are its translations.

Translations are created not directly (i.e., there is no “translations”
resource) but upon form create and update requests. The input JSON object of
such requests has a translations attribute whose value is an array of
objects with transcription and grammaticality attributes, e.g.,

{
 "translations": [
 {"transcription": "dog", "grammaticality": ""},
 {"transcription": "wolf", "grammaticality": "*"}
]
}

Language

Each language model represents a language in the ISO 639-3 standard. These
models are created in the database when paster setup-app is run during the
initial set up of the application. The data are taken from the tab-delimited
text file public/iso_639_3_languages_data/iso_639_3.tab. Existing language
models cannot be updated and new ones cannot be created. The purpose of this
resource is to provide options for the metalanguage and object language id and
name attributes of application settings resources.

The language models are unique among OLD models in lacking an id attribute.
Instead they have Id attributes whose values are the unique three-character
strings used to identify the language. The other attribute of note is the
Ref_Name attribute whose value is the reference name of the language. The
standard makes it clear that no special importance should be given to the
reference name; OLD administrators are encouraged to use whatever language names
seem most appropriate, despite what the value of Ref_Name may be.
However, care should be taken to attempt to identify the correct Id value
for the language being documented via an OLD web service so that this
information is unambiguous.

For completeness, the attributes of language models are listed here: Id,
Part2B, Part2T, Part1, Scope, Type, Ref_Name,
Comment, datetimeModified. See
http://www-01.sil.org/iso639-3/download.asp for the semantics of these
attributes.

Orthography

An orthography model is a representation of the graphemes used in a particular
writing system. The OLD makes use of orthography models in order to effect
input validation on the transcription and morphemeBreak attributes of
form models. Previous versions of the OLD implemented orthography conversion
functionality server-side, thus allowing users to enter transcriptions in one
orthography and have it converted to a string in another (storage) orthography.
However, this functionality will now be the responsibility of any user-facing
applications that make use of OLD web services.

Requests to create or update orthography resources must contain a JSON object of
the following form.

{
 "initialGlottalStops": true
 "lowercase": false,
 "name": "Standard Orthography",
 "orthography": "p, t, k, n, s, i, o, a",
}

Orthography representations returned by the OLD are JSON objects of the
following form.

{
 "datetimeModified": "",
 "id": 1,
 "initialGlottalStops": true,
 "lowercase": false,
 "name": "",
 "orthography": ""
}

initialGlottalStops

The value of the initialGlottalStops is a boolean with True as the
default. The user-supplied input may be a truthy string (i.e., “true”, “on”,
“yes” or “1”), JSON true, a falsey string (i.e., “false”, “off”, “no” or
“0”) or JSON false. This attribute encodes whether the orthography marks
glottal stops at the beginning of words and can be useful for orthography
conversion algorithms.

lowercase

The value of the lowercase is a boolean with False as the default. The
user-supplied input may be a truthy string (i.e., “true”, “on”, “yes” or “1”),
JSON true, a falsey string (i.e., “false”, “off”, “no” or “0”) or JSON
false. This attribute encodes whether the orthography uses only lowercase
characters and can be useful for orthography conversion algorithms and for
reducing the number of graphemes that must be specified in the orthography
attribute.

name

The name attribute holds a name for the orthography. The name must be
unique among orthography names and may not exceed 255 characters. The name
should facilitate identification of the orthography.

orthography

The value of the orthography attribute is a comma-delimited list of strings
representing the graphemes of the orthography. A non-empty value for this
attribute is required.

Previous versions of the OLD drew significance from the ordering of the
graphemes (i.e., for sorting & alphabetization) and also encouraged bracketing
of graphemes into equivalence classes for the purpose of sorting (i.e., “a” and
“á” would be sorted equivalently if the orthography contained
”..., [a, á], ...”). The OLD web service now leaves orthography conversion to
the user-facing applications; therefore, additional conventions for orthography
specification (such as the significance of ordering and equivalence bracketing)
should be detailed in the documentation of those applications.

As described in the Object language validation and
ApplicationSettings sections, orthography models and, in
particular, the values of their orthography attributes are used in input
transcription validation.

Page

A page model can be used to allow users to create web pages using a specified
markup language. Some of the attributes (e.g., heading or name) may be
removed or renamed in future versions of the OLD.

Requests to create or update page resources must contain a JSON object of the
following form.

{
 "content": u"",
 "heading": u"",
 "markupLanguage": u"",
 "name": u""
}

Page representations returned by the OLD are JSON objects of the following form.

{
 "content": "",
 "datetimeModified": "",
 "heading": "",
 "html": "",
 "id": 1,
 "markupLanguage": "",
 "name": ""
}

content

The content attribute holds a string representing the content of the page
written in the specified markup language.

heading

The value of the heading attribute is a user-supplied string, no longer than
255 characters, which could be used as a heading or title for the page.

html

The value of the html attribute is the HTML generated from the user-supplied
content value using the markup-to-HTML function corresponding to the
specified markup language.

markupLanguage

The value of the markupLanguage attribute is one of “Markdown” or
“reStructuredText” as defined in the markupLanguages variable of
lib/utils.py. Markdown and reStructuredText are lightweight markup
languages. A lightweight markup language is a markup language (i.e., a system
for annotating a document) that is designed to be easy to read in its raw form.
The system will expect the value of the content attribute to contain markup
in the specified markup language and will choose a markup-to-HTML function
corresponding to that markup language when generating the HTML of the page. If
no value is specified, “reStructuredText” will be the default.

name

The value of the name attribute is a string used to identify the page. This
value may not exceed 255 characters and a non-empty value must be provided.

Phonology

OLD phonology models are representations of a phonology for the object language.
That is, they specify the relationship between underlying representations (e.g.,
the value of the morphemeBreak attribute) and surface representations (e.g.,
the value of the transcription, phoneticTranscription or
narrowPhoneticTranscription attributes) of form models.

The intention is to use the user-specified phonologies to compile finite-state
transducer implementations of the phonologies and to use these transducers in
the construction of morphological parsers and in functionality that compares
surface strings and underlying strings and informs users of incompatibilities.
At present this functionality is not yet implemented in the OLD.

Requests to create or update phonology resources must contain a JSON object of
the following form.

{
 "description": "",
 "name": "",
 "script": ""
}

Phonology representations returned by the OLD are JSON objects of the following
form.

{
 "datetimeEntered": "",
 "datetimeModified": "",
 "description": "",
 "enterer": { ... }, // object representation of a user
 "id": 1,
 "modifier": null, // object representation of a user or null
 "name": "",
 "script": "",
}

datetimeEntered

The value of the datetimeEntered attribute is a UTC timestamp generated by
the system when a phonology is created. Note that this value is distinct from
the datetimeModified attribute that is common to all model types since that
value is generated upon creation and update requests while the
datetimeEntered value is only generated upon creation requests and is not
altered thereafter.

description

The value of the description attribute is an open-ended, user-supplied
description of the phonology.

enterer

The enterer attribute references the user model whose account was used to
create the phonology. This value is generated automatically by the system upon
phonology creation.

modifier

The modifier attribute references the user model whose account was used to
perform the most recent update on the phonology. This value is generated
automatically by the system upon successfuly phonology update requests.

name

The value of the obligatory name attribute is a unique string, not to exceed
255 characters, that identifies the phonology.

script

The script attribute holds a user-supplied string constituting the rules or
specification of the phonology. The intention is for the OLD to make use of the
FST compiler package called Foma [http://code.google.com/p/foma/]. When this
is implemented, the OLD will expect the script value to contain a valid Foma
script and will attempt to compile it, returning an error on create/update
requests if the compile attempt fails.

Source

Sources are references to texts that can be cited in the source attribute of
form and collection models. The source schema is that of the
BibTeX [http://www.bibtex.org/Format/] file format. The OLD validates input
to source create and update requests in adherence to the BibTeX format.
That is, a source of a given type (i.e., a BibTeX entry type) must have values
for all of the required attributes of that type. For example, a source with a
type value of “article” must have values for its author, title,
journal and year attributes.

OLD source models have attributes corresponding to all of the standard BibTeX
field names as well as attributes corresponding to some non-standard ones. The
full list of source attributes is given below. In general, the source attribute
names match their BibTeX field name counterparts exactly. The exceptions to
this are the key, keyField, type and typeField attributes which
correspond to BibTex key, “key” field name, entry type and “type” field name,
respectively. See the relevant subsections below for details.

Like all other OLD models, sources have id and datetimeModified
attributes. Source models also have a file attribute for referencing an OLD
file model.

At some point, the OLD may specify a syntax for citing source models within the
value of the contents attribute of collection models.

Requests to create or update source resources must contain a JSON object of
the following form. Source representations returned by the OLD are JSON objects
of the same form, with the addition of id, datetimeModified and
crossrefSource attributes. The value of the crossrefSource attribute
is either null (if no crossref value was supplied by the user) or a JSON
object representing the cross-referenced source.

{
 "abstract": "",
 "address": "",
 "affiliation": "",
 "annote": "",
 "author": "",
 "booktitle": "",
 "chapter": "",
 "contents": "",
 "copyright": "",
 "crossref": "",
 "edition": "",
 "editor": "",
 "file": null, // valid file model id or null on input; object on output
 "howpublished": "",
 "institution": "",
 "ISBN": "",
 "ISSN": "",
 "journal": "",
 "key": "chomsky67",
 "keyField": "",
 "keywords": "",
 "language": "",
 "location": "",
 "LCCN": "",
 "month": "",
 "mrnumber": "",
 "note": "",
 "number": "",
 "organization": "",
 "pages": "",
 "price": "",
 "publisher": "",
 "school": "",
 "series": "",
 "size": "",
 "title": "",
 "type": "book",
 "typeField": "",
 "url": "",
 "volume": "",
 "year": ""
}

The descriptions of the BibTeX field names given in the subsections below are
taken, with some modifications, from Kopka.2004. The restrictions on lengths
of attribute values are imposed (somewhat arbitrarily) by the OLD and are not
part of the BibTeX format.

abstract

An abstract of the work. Maximum length is 1000 characters.

address

Usually the address of the publisher or other type of institution. For major
publishing houses, it is recommended that this information be omitted entirely.
For small publishers, on the other hand, you can help the reader by giving the
complete address. Maximum length is 1000 characters.

affiliation

The author’s affiliation. Maximum length is 255 characters.

annote

An annotation. It is not used by the standard bibliography styles, but may be
used by others that produce an annotated bibliography.

author

The name(s) of the author(s), in the format described in Kopka.2004. There are
two basic formats: (1) Given Names Surname and (2) Surname, Given Names.
For multiple authors, use the formats just specified and separated each such
formatted name by the word “and”. Maximum length is 255 characters.

booktitle

Title of a book, part of which is being cited. See Kopka.2004 for details on
how to type titles. For book entries, use the title field instead. Maximum
length is 255 characters.

chapter

A chapter (or section or whatever) number. Maximum length is 255 characters.

contents

A table of contents. Maximum length is 255 characters.

copyright

Copyright information. Maximum length is 255 characters.

crossref

The key value of another source to be cross-referenced. Any attribute values
that are missing from the source model are inherited from the source
cross-referenced via the crossref attribute. Maximum length is 1000
characters.

If a valid key value is supplied as the value of the crossref attribute,
the system will use the attributes of the cross-referenced source when
validating the input. That is, a source whose type value is, for example,
“inproceedings” would normally fail validation if it lacks a value for its
booktitle attribute; however, if it cross-references another source whose
type value is “proceedings” and which has a content-ful booktitle value,
then it will pass validaton. If a valid crossref value is passed on input,
then, on output, the value of crossrefSource will be an object representing
the cross-referenced source.

crossrefSource

The value of the crossrefSource attribute is either null or the source
model that is cross-referenced via the crossref attribute. That is, a valid
crossref value passed on input will cause the system to set the
cross-referenced source as the value of the crossrefSource attribute. When
returning a JSON representation of the original source, the value of the
crossrefSource attribute will be a JSON object representing the
cross-referenced source.

edition

The edition of a book – for example, “Second”. This should be an ordinal, and
should have the first letter capitalized, as shown here; the standard styles
convert to lower case when necessary. Maximum length is 255 characters.

editor

Name(s) of editor(s), typed as indicated in Kopka.2004. At its most basic,
this means either as Given Names Surname or Surname, Given Names and using
“and” to separate multiple editor names. If there is also a value for the
author attribute, then the editor attribute gives the editor of the book
or collection in which the reference appears. Maximum length is 255 characters.

file

Source models may reference an OLD file model object via the file attribute,
thus permitting the association to a source of a document containing the source
text itself. Note that the file attribute does not correspond to a standard
BibTeX field name.

howpublished

How something strange has been published. The first word should be capitalized.
Maximum length is 255 characters.

institution

The sponsoring institution of a technical report. Maximum length is 255
characters.

ISBN

The International Standard Book Number. Maximum length is 20 characters.

ISSN

The International Standard Serial Number. Used to identify a journal. Maximum
length is 20 characters.

journal

A journal name. Abbreviations are provided for many journals. Maximum length is
255 characters.

key

The OLD source key field is the BibTeX key, i.e., the unique string used to
unambiguously identify a source. Usually some type of convention is established
for creating key values, e.g., the first author’s last name in lowercase
followed by the year of publication: “chomsky57”. Maximum length is 1000
characters. All sources must have a valid key value and this value must be
unique among source key values. A valid key value is any combination of
ASCII letters, numerals and symbols (except the comma).

keyField

Used for alphabetizing, cross referencing, and creating a label when the
author information is missing. This field should not be confused with the
source’s key attribute. Maximum length is 255 characters.

keywords

Key words used for searching or possibly for annotation. Maximum length is 255
characters.

language

The language the document is in. Maximum length is 255 characters.

location

A location associated with the entry, such as the city in which a conference
took place. Maximum length is 255 characters.

LCCN

The Library of Congress Call Number. Maximum length is 20 characters.

month

The month in which the work was published or, for an unpublished work, in which
it was written. Maximum length is 100 characters.

mrnumber

The Mathematical Reviews number. Maximum length is 25 characters.

note

Any additional information that can help the reader. The first word should be
capitalized. Maximum length is 1000 characters.

number

The number of a journal, magazine, technical report, or of a work in a series.
An issue of a journal or magazine is usually identified by its volume and
number; the organization that issues a technical report usually gives it a
number; and sometimes books are given numbers in a named series. Maximum length
is 100 characters.

organization

The organization that sponsors a conference or that publishes a manual. Maximum
length is 255 characters.

pages

One or more page numbers or range of numbers, such as 42–111 or 7,41,73–97 or
43+ (the “+” in this last example indicates pages following that don’t form a
simple range). Maximum length is 100 characters.

price

The price of the document. Maximum length is 100 characters.

publisher

The publisher’s name. Maximum length is 255 characters.

school

The name of the school where a thesis was written. Maximum length is 255
characters.

series

The name of a series or set of books. When citing an entire book, the title
attribute gives its title and an optional series attribute gives the name of
a series or multi-volume set in which the book is published. Maximum length is
255 characters.

size

The physical dimensions of a work. Maximum length is 255 characters.

title

The work’s title, typed as explained in the Kopka.2004. Maximum length is 255
characters.

type

The value of the OLD source type attribute is the BibTeX entry type, e.g.,
“article”, “book”, etc. The valid entry types and their required fields are
specified as the keys of the entryTypes dictionary in lib/bibtex.py. A
valid type value is obligatory for all source models. The chosen type
value will determine which other attributes must also possess non-empty values,
cf. the table below.

	type
	required attributes

	article
	author, title, journal, year

	book
	author or editor, title, publisher, year

	booklet
	title

	conference
	author, title, booktitle, year

	inbook
	author or editor, title, chapter or pages, publisher, year

	incollection
	author, title, booktitle, publisher, year

	inproceedings
	author, title, booktitle, year

	manual
	title

	mastersthesis
	author, title, school, year

	misc
	

	phdthesis
	author, title, school, year

	proceedings
	title, year

	techreport
	author, title, institution, year

	unpublished
	author, title, note

typeField

The type of a technical report—for example, “Research Note”. Maximum length
is 255 characters.

url

The universal resource locator for online documents; this is not standard but
supplied by more modern bibliography styles. Maximum length is 1000 characters.

volume

The volume of a journal or multi-volume book. Maximum length is 100 characters.

year

The year of publication or, for an unpublished work, the year it was written.
Generally it should consist of four numerals, such as 1984.

Speaker

An OLD speaker model represents a speaker or consultant who is the source of a
linguistic form or collection thereof or who is the speaker on a recording.

Requests to create or update speaker resources must contain a JSON object of the
following form.

{
 "dialect": "",
 "firstName": "John",
 "lastName": "Doe",
 "markupLanguage": ""
 "pageContent": ""
}

Speaker representations returned by the OLD are JSON objects of the following
form.

{
 "datetimeModified": "",
 "dialect": "",
 "firstName": "",
 "html": "",
 "id": 1,
 "lastName": "",
 "markupLanguage": "",
 "pageContent": ""
}

dialect

The value of the dialect attribute is a string denoting the dialect of the
speaker. The value may not exceed 255 characters.

Note that for abstract lexical forms, where it does not make sense to specify a
speaker, dialects can be specified via tags – perhaps with a special syntax to
facilitate search, e.g., “dialect:dialect_name”.

firstName

The firstName attribute holds the first name of the speaker. A value is
obligatory and cannot exceed 255 characters.

html

The value of the html attribute is a string of HTML that is generated by the
system using the value of the pageContent attribute and the markup language
specified in the markupLanguage attribute.

lastName

The lastName attribute holds the last name of the speaker. A value is
obligatory and cannot exceed 255 characters.

markupLanguage

The value of the markupLanguage attribute is one of “Markdown” or
“reStructuredText” as defined in the markupLanguages variable of
lib/utils.py. Markdown and reStructuredText are lightweight markup
languages. A lightweight markup language is a markup language (i.e., a system
for annotating a document) that is designed to be easy to read in its raw form.
This value determines which markup-to-HTML function is employed when the system
attempts to generate the html value from the user-supplied pageContent
value. If no value is specified, “reStructuredText” will be the default.

pageContent

The value of the pageContent attribute is a string that can be used to
construct a web page for the speaker. Future versions of the OLD will probably
include markupLanguage and html attributes so that speaker creators can
specify a markup language that the system can use to generate and cache the
HTML.

SyntacticCategory

Syntactic category models are used to categorize form models into morphological
or syntactic classes.

Requests to create or update syntactic category resources must contain a JSON
object of the following form.

{
 "description": "",
 "name": "",
 "type": ""
}

Syntactic category representations returned by the OLD are JSON objects of the
following form.

{
 "datetimeModified": "",
 "description": "",
 "id": "",
 "name": "",
 "type": ""
}

description

The value of the description attribute can be used to describe the category
and/or clarify its intended usage.

name

The name attribute holds the name of the category. Example names might be
“N”, “S”, “Agr”, “VP”, “V’”, “Noun”, “Sentence”, “CP”, etc. A non-empty value
for this attribute is obligatory, must be unique among other syntactic category
name values and may not exceed 255 characters.

type

Syntactic categories are themselves categorized via the type attribute.
Valid values, as defined in the syntacticCategoryTypes tuple of
lib/utils.py are “lexical”, “phrasal” and “sentential”. An input value of
null or the empty string will result in null as value. The purpose of
this attribute is to help the system to better understand the categorization.
This categorization could be useful for functionality that, say, seeks to induce
a grammar of the morphology of the language. The available syntactic category
types may change in future versions of the OLD.

Tag

Tags are general-purpose, user-defined models that can be associated to forms,
files and collections. Any form, file or collection may have zero or more tags
associated to it. Example usage of a tag would be to create tags for linguistic
phenomena relevant to ones research; searches could then make reference to the
presence or absence of this tag.

There are two special tags that are identified by their name values; these
are the “restricted” and “foreign word” tags. These tags cannot be deleted via
the interface (and should not be forcefully deleted by administrators using the
RDBMS as this may have unintended consequences). The usage of the restricted
and foreign word tags are described in the Authentication & authorization and
Object language validation sections, respectively.

Requests to create or update tag resources must contain a JSON object of the
following form.

{
 "description": "",
 "name": ""
}

Tag representations returned by the OLD are JSON objects of the following form.

{
 "datetimeModified": "",
 "description": "",
 "id": "",
 "name": ""
}

description

The value of the description attribute can be used to describe the tag
and/or clarify its intended usage.

name

The name attribute holds the name of the tag. Example names might be “VP
ellipsis”, “double object” or “needs verification”. A non-empty value for this
attribute is obligatory, must be unique among other tag name values and may
not exceed 255 characters.

User

User models represent the authorized users of an OLD web service.
Authenticating to an OLD web service means supplying values for username and
password attributes that match those of an existing user model. Only users
with a role value of “administrator” are authorized to create new users.
An authenticated user is permitted to update her own user model; however, only
administrators can change the value of the username attribute.

Requests to create or update user resources must contain a JSON object of the
following form. Note that on update, setting the values of the username and
password attributes to null will cause the system to leave those values
unchanged.

{
 "affiliation": "",
 "email": "",
 "firstName": "",
 "inputOrthography": null,
 "lastName": "",
 "markupLanguage": "",
 "outputOrthography": null
 "pageContent": "",
 "password": "",
 "password_confirm": "",
 "role": "",
 "username": "",
}

User representations returned by the OLD are JSON objects of the following form.
Note that the password attribute is never present and that the username
attribute is present only in the return value of DELETE, POST and PUT requests.

{
 "affiliation": "",
 "datetimeModified": "",
 "email": "",
 "firstName": "",
 "html": "",
 "id": 1,
 "inputOrthography": null, // object representation of an orthography model or null
 "lastName": "",
 "markupLanguage": "",
 "outputOrthography": null, // object representation of an orthography model or null
 "pageContent": "",
 "role": "",
 "username": ""
}

affiliation

The value of the affiliation attribute is a string representing the school
or institution with which the user is affiliated. A value here is optional.
Maximum allowable length is 255 characters.

email

The email attribute holds the email address of the user. A valid email must
be provided. Maximum allowable length is 255 characters.

firstName

The value of the firstName attribute is the first name(s) of the user. A
value here is obligatory. Maximum allowable length is 255 characters.

html

The value of the html attribute is a string of HTML that is generated by the
system using the value of the pageContent attribute and the markup language
specified in the markupLanguage attribute.

inputOrthography

The inputOrthography is a reference to an existing orthography model object.
The purpose of a user-specific input orthography is to allow for the possibility
that users will enter form transcriptions (and possibly also morpheme
segmentations) using one orthography (i.e., their input orthography) but that
these transcriptions will be translated into another orthography (i.e., the
system-wide storage orthography) for storage in the database. When outputing
the forms, the system would then re-translate them from the storage orthography
into the user’s output orthography. Previous OLD applications implemented this
user-specific orthography conversion server-side. However, with the new
architecture of the OLD >= 1.0 this added complication seems best implemented
client-side.

lastName

The value of the lastName attribute is the last name of the user. A value
here is obligatory. Maximum allowable length is 255 characters.

markupLanguage

The value of the markupLanguage attribute is one of “Markdown” or
“reStructuredText” as defined in the markupLanguages variable of
lib/utils.py. Markdown and reStructuredText are lightweight markup
languages. A lightweight markup language is a markup language (i.e., a system
for annotating a document) that is designed to be easy to read in its raw form.
This value determines which markup-to-HTML function is employed when the system
attempts to generate the html value from the user-supplied pageContent
value. If no value is specified, “reStructuredText” will be the default.

outputOrthography

The outputOrthography is a reference to an existing orthography model
object. The purpose of a user-specific input orthography is to allow for the
possibility that users will enter form transcriptions (and possibly also
morpheme segmentations) using one orthography (i.e., their input orthography)
but that these transcriptions will be translated into another orthography (i.e.,
the system-wide storage orthography) for storage in the database. When
outputing the forms, the system would then re-translate them from the storage
orthography into the user’s output orthography. Previous OLD applications
implemented this user-specific orthography conversion server-side. However,
with the new architecture of the OLD >= 1.0 this added complication seems best
implemented client-side.

pageContent

The pageContent attribute holds a string representing the content of the
user’s page. This content should be written using the markup language specified
in the markupLanguage attribute.

password

When creating a user, a valid value for the password attribute must be
supplied. A valid password is composed of at least eight characters but no more
than 255. It must contain either at least one printable character not in the
printable ASCII range or one symbol, one digit, one uppercase letter and one
lowercase letter. For example, “dave.Smith1” is a valid password, as is
“philippe.gagné”. (The latter contains a non-ASCII character.)

The users controller stores the password in the database encrypted using the
PassLib module’s implementation of the PBKDF2 key derivation function and
the value of the salt attribute. During authentication attempts, the system
applies the same encryption to the supplied password values and authentication
succeeds if the encrypted password string from the request matches the encrypted
password of the specified user. This means that even administrators of the
system are unable to view any user passwords in their unencrypted form.

When specifying a new password, the input object passed in the request must also
contain a password_confirm attribute whose value exactly matches that of the
object’s password attribute.

rememberedForms

The value of the rememberedForms attribute is a collection of form models
that the user has “remembered”. See the Remembered forms
section for details on how to modify the value of this attribute. Note that
this attribute is not included in the JSON object representation of user models.
Retrieving a user’s remembered forms requires a separate request to the
rememberedforms resource.

role

The role attribute is used to classify users and is the basis for the
authorization functionality. Every user must have a value for the role
attribute. Valid values are “administrator”, “contributor” and “viewer”.
Administrators have unrestricted access to all requests on all resources,
contributors have read and write access to almost all resources and viewers have
only read access. See the Authentication & authorization section for more details on roles and
authorization.

salt

A value for the salt attribute is generated by the system when a user is
created. This value is a randomly generated UUID. The salt aids in the secure
encryption of the password.

username

The value of the username attribute is a string consisting of letters of the
English alphabet, numbers and the underscore. Each user must have a unique
username value and no two usernames may be the same. Only an administrator
can update the username of a user model.

	[1]	The models are defined in the model directory of the source code.
Each model has its own appropriately named module where it is declared. The
form model, for example, is declared in model/form.py.

	[2]	The code that validates user input is located in lib/schemata.py.

	[3]	Cf. http://unicode.org/reports/tr15/ and
http://en.wikipedia.org/wiki/Unicode_equivalence.

	[4]	Technically, such requests will be rejected if the length of the
request body (as a Python unicode object) is greater than 20971520.

	[5]	Note that updates to a local file model/resource cannot alter the
binary data of the file model. That is, if the wrong file is uploaded, it is
necessary to delete the miscreated file and to create a new one with the
correct file data.

	[6]	Note the distinction between OLD collections which are a type of
model and collections in the ORM sense where the term refers to a type of
model attribute which references a set of zero or more other models. E.g.,
form.files is a collection of file models and is an example of a
collection in the second sense.

	[Kopka.2004]	Kopka, Helmut and Daly, Patrick W. 2004. Guide to LATEX.
Addison-Wesley Professional.

 Copyright 2013, Joel Dunham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	OLD 1.0a1 documentation

onlinelinguisticdatabase

config

environment

middleware

routing

controllers

applicationsettings

collectionbackups

elicitationmethods

error

files

formbackups

forms

formsearches

languages

login

oldcollections

orthographies

pages

phonologies

rememberedforms

sources

speakers

syntacticcategories

tags

users

lib

SQLAQueryBuilder

 Copyright 2013, Joel Dunham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	OLD 1.0a1 documentation

 Python Module Index

 o

 			

 		
 o	

 	[image: -]
 	
 onlinelinguisticdatabase	

 	
 	
 onlinelinguisticdatabase.config	

 	
 	
 onlinelinguisticdatabase.controllers	

 Copyright 2013, Joel Dunham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	OLD 1.0a1 documentation

Index

 O

O

 	

 	onlinelinguisticdatabase (module)

 	onlinelinguisticdatabase.config (module)

 	

 	onlinelinguisticdatabase.controllers (module)

 Copyright 2013, Joel Dunham.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_images/OLD_diagram_med_level.png
Routes

v A
Pylons Controllers
v L)
SQLAIchemy Models
2

~—
OLD Web Service

Interface

Data
Structure

_images/OLD_diagram_high_level.png
Mobile App

HTTPJSON

Command-ine
Program
HTTRjSON

HTTPSON

L7

Application Logic

<>

Database

OLD Web Service

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		OLD 1.0a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Joel Dunham.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/OLD_diagram_med_level.png
Routes

v A
Pylons Controllers
v L)
SQLAIchemy Models
2

~—
OLD Web Service

Interface

Data
Structure

_static/comment-bright.png

_static/up-pressed.png

_static/OLD_diagram_high_level.png
Mobile App

HTTPJSON

Command-ine
Program
HTTRjSON

HTTPSON

L7

Application Logic

<>

Database

OLD Web Service

_static/comment.png

_static/down.png

