
OLD Documentation
Release 1.0a1

Joel Dunham

September 21, 2016

Contents

1 Getting Started 3
1.1 About . 3
1.2 Installation & Configuration . 5

2 Architecture 17
2.1 Introduction . 17
2.2 Interface . 19
2.3 Data Structure . 36

3 API Documentation 77
3.1 onlinelinguisticdatabase . 79

Bibliography 81

Python Module Index 83

i

ii

OLD Documentation, Release 1.0a1

Welcome to the documentation for the Online Linguistic Database version 1.0.

Contents 1

OLD Documentation, Release 1.0a1

2 Contents

CHAPTER 1

Getting Started

This section describes what the Online Linguistic Database does and how to get and install it.

1.1 About

The Online Linguistic Database (OLD) is software that facilitates collaborative storing, searching, processing and
analyzing of linguistic fieldwork data.

Linguistic fieldwork stands to benefit significantly from inter-researcher collaboration and data-sharing. The OLD
arose as a response to a lack of multi-user cross-platform tools for language documentation and analysis.

1.1.1 Purpose

The OLD seeks to facilitate achievement of the following objectives.

1. Language data can be shared easily between researchers.

2. Language data are intelligently structured (balancing an allowance for theoretical and methodological variation
with capacity for easy retrieval and re-purposing.)

3. Language data are highly searchable.

4. Access to language data can be controlled via authentication and authorization.

5. Language data can be re-purposed. E.g., word list data recorded, transcribed and analyzed by a phonetician can
be used by a syntactician, anthropologist, educator and/or community member.

6. Language data are digitized and available for digital processing, e.g., parsing, automated information extraction,
corpus analysis, comparative cross-linguistic analysis.

1.1.2 What is it?

The OLD is a program for creating collaborative language documentation web services 1. A web service is like a web
site or web application, insofar as it runs on a web server and responds to HTTP requests. However, a web service
differs from a traditional web application in that it expects to communicate with other programs and not, directly, with
human users.

The benefit of this design strategy is that a single web service can form a useful component of a variety of different
applications with different goals. For example, an OLD web service for language L could serve data to a mobile

1 Note that this is a break from previous versions of the OLD. In versions 0.1 through 0.2.7, the OLD was a traditional web application, i.e., it
served HTML pages as user interface and expected user input as HTML form requests.

3

OLD Documentation, Release 1.0a1

application that helps users to learn L. At the same time, researchers could be collaboratively entering, searching and
processing data on the OLD web service via a desktop application and/or a browser-based one.

The OLD will be packaged with an in-browser user-friendly application. However, since these two applications will
not be interdependent their documentation will be kept separate also.

The OLD is intended to be set up on a web server. However, it can also easily be installed on a personal computer for,
say, developmental or experimental purposes. For detailed installation instructions see the Installation & Configuration
section.

The OLD is, at its core, a database-driven application. It is essentially an interface to a relational database with a
specific data structure, or schema. The schema was designed with the goals of linguistic fieldwork in mind. An OLD
web service receives input in the form of HTTP requests with parameters encoded (usually) as JavaScript Object
Notation (JSON). The application logic authenticates and authorizes the request and then, depending on the type of
request, queries or updates the database and returns an HTTP response with JSON in the response body. This is
illustrated in the diagram below.

4 Chapter 1. Getting Started

OLD Documentation, Release 1.0a1

1.1.3 Core features

1. User authentication and authorization.

2. Multi-user resource creation, retrieval, update and deletion (where a “resource” is something like a linguistic
form or a syntactic category).

3. Input validation (e.g., ensuring that morpheme segmentation strings do not contain characters outside of a spec-
ified phonemic inventory and set of morpheme delimiters).

4. Application-wide settings, i.e., validation settings, specifications of inventories & orthographies, object and
meta-language identification, etc.

5. Data processing (e.g., copying and reduction of image and audio files, generation of category strings based on
the categories of component morphemes, phrase-morpheme auto-linking, etc.)

6. Resource search, i.e., open-ended, nested boolean search with substring, exact and regular expression matches
against specified fields.

7. Linguistic analysis: phonology & corpora specification, automatic morphological modeling and morphological
parser creation, syntactic parser specification & generation.

1.1.4 Technologies

The OLD is written in Python 2, using the Pylons web framework. It exposes a RESTful API based on the Atom
Publishing Protocol, as implemented by the Routes URL routing component of Pylons. The relational database man-
agement system (RDBMS) may be MySQL or SQLite (others are, in principle, possible also). SQLAlchemy provides
a Pythonic interface (ORM) to the RDBMS.

1.1.5 Who should read this manual?

This document will be of use to anyone wishing to understand the inner workings of the OLD.

It will be useful, in particular, to system administrators who want to know how to acquire, configure, install and serve
an OLD web service.

It will also be useful to developers who would like to contribute to the code or create user-facing applications that
interact with OLD web services. Developers will also benefit from reading the API documentation.

End users who wish to know more about the data structures of the OLD or its linguistic analysis and language pro-
cessing components will also find this manual helpful. Typically, end users of an OLD-based system will interact with
an OLD web service not directly but via a user interface-focused application. Such users may want to consult the
documentation for the latter application before exploring the present document.

1.1.6 License

The OLD is open source software licensed under Apache 2.0.

1.2 Installation & Configuration

This section explains how to get, install and configure an OLD application. An overview of the process:

1. Download and install the OLD.
2 The OLD works with Python 2.6 and 2.7 but not with Python <= 2.5. It has not been tested with Python 3.

1.2. Installation & Configuration 5

http://www.apache.org/licenses/LICENSE-2.0.txt

OLD Documentation, Release 1.0a1

2. Generate an OLD config file and edit it.

3. Run the setup command to create the database tables and directory structure.

4. Serve the application and test that it is working properly.

Note that these installation instructions assume a Unix-like system, e.g., Linux or Mac OS X. If you are using Windows
1, please refer to the Pylons or the virtualenv documentation for instructions on how to create and activate a Python
virtual environment and install and download a Pylons application.

1.2.1 QuickStart

For the impatient, here is the quickest way to install, configure and serve an OLD application. Before blindly issuing
the following commands, however, it is recommended that you read the detailed instructions in the following sections

virtualenv --no-site-packages env
source env/bin/activate
easy_install onlinelinguisticdatabase
mkdir xyzold
cd xyzold
paster make-config onlinelinguisticdatabase production.ini
paster setup-app production.ini
paster serve production.ini

Open a new terminal window and run the basic test script to ensure that the OLD application is being served and is
operating correctly:

python _requests_tests.py

You should see All requests tests passed. as output. Congratulations.

1.2.2 Download

Pre-packaged eggs of stable OLD releases can be downloaded from the Python Package Index.

The easiest way to get and install the OLD is via the Python command-line program Easy Install. Before issuing
the following command, read the Create a virtual Python environment and consider installing the OLD in a virtual
environment. To download and install the OLD with Easy Install, run:

sudo easy_install onlinelinguisticdatabase

For developers, the full source code for the OLD can be found on GitHub. To clone the OLD repository, first install
Git and then run:

git clone git://github.com/jrwdunham/old.git

See below for detailed instructions.
1 The OLD has not been tested on Windows. Some alterations to the source may be required in order to get it running on a Windows OS. To be

clear, this does not mean that users running a Windows OS will not be able to use a production OLD web application. A live OLD application is
a web service and users with any operating system should be able to interact with it, assuming an internet connection is available. What this does
mean is that the OLD, as is, may not run on a Windows server.

6 Chapter 1. Getting Started

http://pypi.python.org/pypi/onlinelinguisticdatabase
https://github.com/jrwdunham/old.
http://git-scm.com/

OLD Documentation, Release 1.0a1

1.2.3 Install

Create a virtual Python environment

It is recommended that the OLD be installed in a virtual Python environment. A virtual environment is an isolated
Python environment within which you can install the OLD and its dependencies without inadvertently rendering other
programs unworkable by, say, upgrading their dependencies in incompatible ways. If you do not want to install the
OLD and its dependencies in a virtual environment, skip this section.

Use virtualenv to create a virtual Python environment. First, follow the steps on the aforementioned web site to install
virtualenv. If you already have easy_install or pip installed, you can just run one of the following commands
at the terminal:

pip install virtualenv
easy_install virtualenv

Otherwise, you can download the virtualenv archive, decompress it, move into the directory and install it manu-
ally, i.e.,

cd virtualenv-X.X
python setup.py install

Once virtualenv is installed, create a virtual environment in a directory called env (or any other name) with the
following command:

virtualenv --no-site-packages env

The virtual environment set up in env is packaged with a program called easy_install which, as its name
suggests, makes it easy to install Python packages and their dependencies. We will use the virtual environment’s
version of easy_install to install the OLD and its dependencies into the virtual environment.

There are two ways to do this. The more explicit and verbose way is to specify the path to the executables in the virtual
environment directory. That is, to run the virtual environment’s python, easy_install or pip executables, you
would run one of the following commands.

/path/to/env/bin/python
/path/to/env/bin/easy_install
/path/to/env/bin/pip

The easier way (on Posix systems) is to activate the Python virtual environment by running the source command
with the path to the activate executable in your virtual environment as its first argument. That is, run:

source /path/to/env/bin/activate

If the above command was successful, you should see the name of your virtual environment directory in parentheses to
the left of your command prompt, e.g., (env)username@host:~$. Now invoking python, easy_install,
paster, pip, etc. will run the relevant executable in your virtual environment.

Install the OLD

The easiest way to install the OLD is via Easy Install, as in the command below. (Note that from this point on I am
assuming that you have activated a virtual environment in one of the two ways described above or have elected not to
use a virtual environment.)

easy_install onlinelinguisticdatabase

You can also use pip to install it:

1.2. Installation & Configuration 7

http://www.virtualenv.org
http://peak.telecommunity.com/DevCenter/EasyInstall

OLD Documentation, Release 1.0a1

pip install onlinelinguisticdatabase

Once the install has completed, you should see Finished processing dependencies for
onlinelinguisticdatabase. (If you used pip, you will see something like Successfully installed
onlinelinguisticdatabase.) This means that the OLD and all of its dependencies have been successfully
installed.

If you have downloaded the OLD source code and need to install the dependencies, then move to the root directory of
the source, i.e., the one containing the setup.py file, and run:

python setup.py develop

1.2.4 Configure

Generate the config file

Once the OLD is installed, it is necessary to configure it. This is done by generating a default config file and making
any desired changes. When the OLD’s setup script is run, several directories will be created in the same directory as
the config file. Therefore, it is a good idea to create the config file in its own directory. I use the convention of naming
production systems using the ISO 639-3 three-character id of the object language. To illustrate, I will use the fictitious
language id xyz and will name the directory xyzold, the MySQL database xyzold and the MySQL user xyzuser.
If following this convention, replace “xyz” with the Id of the language your OLD application will be documenting. To
make a new directory called xyzold and change to it, issue the following commands.

mkdir xyzold
cd xyzold

The first step in configuring the OLD is creating a config file. To create a config file named production.ini, run:

paster make-config onlinelinguisticdatabase production.ini

By default, the OLD is set to serve at 127.0.0.1 on port 5000, the Pylons interactive debugger is turned off and the
database (RDBMS) is set to SQLite (a database called production.db will be created in the current directory).
These defaults are good for verifying that everything is working ok. On a production system you will need to change
the host and port values in the config file as well as set the database to MySQL. If you want to get up and running
with MySQL right away, see the Set up MySQL/MySQLdb section; otherwise, continue on to Edit the config file.

Developers will not need to generate a config file. The test.ini and development.ini config file should
already be present in the root directory of the source. See the Developers section for details.

Set up MySQL/MySQLdb

The OLD can be configured to use either MySQL or SQLite as its relational database management system (RDBMS).

While SQLite is easy to install (both the SQLite library and the pysqlite language binding are built into the Python
language), it is not recommended for multi-user concurrent production systems. Therefore, a production OLD setup
should have MySQL installed. The following instructions assume that you have successfully installed the MySQL
server on your system.

First login to MySQL as root:

mysql -u root -p<root_password>

Then create a database to store your OLD data:

8 Chapter 1. Getting Started

http://www-01.sil.org/iso639-3/codes.asp
http://www.sqlite.org/
http://www.mysql.com/

OLD Documentation, Release 1.0a1

mysql> create database xyzold default character set utf8;

Now create a MySQL user with sufficient access to the above-created database. In the first command, xyzuser is
the username and 4R5gvC9x is the password.

mysql> create user 'xyzuser'@'localhost' identified by '4R5gvC9x';
mysql> grant select, insert, update, delete, create, drop on xyzold.* to 'xyzuser'@'localhost';
mysql> quit;

Make sure that the above commands worked:

mysql -u xyzuser -p4R5gvC9x
mysql> use xyzold;
mysql> show tables;

Now MySQL is set up with a database called xyzold (with UTF-8 as its default character set) and a user xyzuser
who has access to xyzold. The next step is to make sure that the python module MySQLdb is installed. Enter a
Python prompt (using your virtual environment, if applicable) and check:

python
>>> import MySQLdb

If you see no output, then MySQLdb is installed. If you see ImportError: No module named MySQLdb,
then you need to install MySQLdb.

Installing MySQLdb can be tricky. On some Linux distributions, it is necessary to first install python-dev. On
distros with the Advanced Packaging Tool, you can run the following command.

apt-get install python-dev

Once python-dev is installed, run the following to install MySQLdb (remembering to activate the virtual environ-
ment, if necessary).

easy_install MySQL-python

Note that it is also possible to use easy_install to install MySQLdb at the same time as you install the OLD.
Instead of running easy_install onlinelinguisticdatabase as above, run the following command:

easy_install onlinelinguisticdatabase[MySQL]

Edit the config file

The config file (whose creation was described in Generate the config file) is where an OLD app is configured. Open
the config file (e.g., production.ini) and make any desired changes. While the config file is self-documenting,
this section supplements that documentation.

(Note that once the OLD is downloaded and installed, it may be used to run several distinct OLD web services, e.g.,
for different languages. To do this, repeat the configuration steps with different settings. For example, to create two
OLD web services, one for language xyz and one for language abc, create two directories, xyzold and abcold,
generate a config file in each, and edit each config file appropriately, following these instructions.)

The host and port where the application will be served are configured here. The defaults of 127.0.0.1 (i.e., lo-
calhost) and 5000 are fine for initial setup and testing. During deployment and server configuration, the host will
certainly need to be changed and the port probably also.

The set debug = false line should be left as is on a production setup. However, for initial testing it is a good
idea to comment out this line with a hash mark (i.e., #set debug = false) so that errors can be debugged. When
the line is commented out and an error occurs, Pylons will generate a detailed error report with a web interface that
can be accessed by navigating to the link printed to the console (i.e., stderr).

1.2. Installation & Configuration 9

OLD Documentation, Release 1.0a1

The sqlalchemy.url parameter will need to be changed, depending on the relational database setup needed. If
SQLite will be used, then the sqlalchemy.url = sqlite:///production.db line should remain uncom-
mented. Change the database name, if desired; i.e., change production.db to, say, mydb.sql.

If MySQL will be used, then the first step is to comment out the SQLite line, and uncomment the two MySQL lines:

#sqlalchemy.url = sqlite:///production.db
sqlalchemy.url = mysql://username:password@localhost:3306/dbname
sqlalchemy.pool_recycle = 3600

Then, change the first MySQL line so that it contains the appropriate values for your MySQL setup. E.g., using the
example setup from Set up MySQL/MySQLdb would involve changing it to the following:

sqlalchemy.url = mysql://xyzuser:4R5gvC9x@localhost:3306/xyzold

The only other values you may want to change are password_reset_smtp_server,
create_reduced_size_file_copies and preferred_lossy_audio_format.

Uncomment the password_reset_smtp_server = smtp.gmail.com line if you want the system to send
emails using a Gmail account specified in a separate gmail.ini config file.

Set create_reduced_size_file_copies to 0 if you do not want the system to create copies of images and
.wav files with reduced sizes. Note that in order for the reduced-copies functionality to succeed with images and .wav
files it is necessary to install the Python Imaging Library (PIL) and FFmpeg, respectively (see the Soft dependencies
section below).

Finally, set the preferred_lossy_audio_format to mp3 instead of ogg if you would like to create .mp3
copies of your users’ .wav files instead of .ogg ones. (Note that a default installation of FFmpeg may not be able to
convert .wav to .mp3 without installation of some additional libraries.)

1.2.5 Setup

Once the OLD has been installed and a config file has been created and edited, it is time to run the setup command.
This will generate the tables in the database, insert some defaults (e.g., some users and useful tags) and create the
requisite directory structure. To set up an OLD application, move to the directory containing the config file (e.g.,
xyzold containing production.ini) and run the paster setup-app command:

cd xyzold
paster setup-app production.ini

If successful, the output should be Running setup_app() from onlinelinguisticdatabase.websetup.
By default, the OLD sends logs to application.log so if you run cat application.log you should see
something like the following.

Environment loaded.
Retrieving ISO-639-3 languages data.
Creating a default administrator, contributor and viewer.
Tables created.
Creating default home and help pages.
Generating default application settings.
Creating some useful tags and categories.
Adding defaults.
OLD successfully set up.

If you now enter the database and poke around, you will see that the tables have been created and the defaults inserted.

mysql -u xyzuser -p4R5gvC9x
mysql> use xyzold;

10 Chapter 1. Getting Started

OLD Documentation, Release 1.0a1

mysql> show tables;
mysql> select username from user;

You should also see two new directories (analysis and files), the application log file application.log and
Python script _requests_tests.py.

1.2.6 Serve

To begin serving an OLD application, use Paster’s serve command:

paster serve production.ini

The output should be something like the following.

Starting server in PID 7938.
serving on http://127.0.0.1:5000

If you visit http://127.0.0.1:5000 in a web browser, you should see {"error": "The resource
could not be found."} displayed. If you visit http://127.0.0.1:5000/forms in a web browser, you
should see {"error": "Authentication is required to access this resource."}. These
error responses are to be expected: the first because no resource was specified in the request URL and the second
because authentication is required before forms can be read. Congratulations, this means an OLD application has
successfully been set up and is being served locally.

When paster setup-app is run, a Python script called _requests_tests.py is created in the current work-
ing directory. This script uses the Python Requests module to test that a live OLD application is working correctly.
Assuming that you have run paster serve and an OLD application is being served locally on port 5000, running
the following command will run the _requests_tests script:

python _requests_tests.py

If everything is working correctly, you should see All requests tests passed. (Note that if you have
changed the config file, i.e., the host or port values, then you will need to change the values of the host and/or port
variables in _requests_tests.py to match.)

1.2.7 Soft dependencies

In order to create smaller copies of image files and .wav files, the OLD uses the Python Imaging Library (PIL) and the
FFmpeg command-line program. If you would like your OLD application to automatically create reduced-size images
and lossy (i.e., .ogg or .mp3) copies of .wav files, then these programs should be downloaded and installed using the
instructions on the above-linked pages. I provide brief instructions here.

In order to allow the specification of phonologies as finite-state transducers, the OLD uses the command-line programs
foma and flookup. See the linked page for installation instructions.

In order to search OLD treebank corpora, Tgrep2 must be installed.

NLTK may be used for some OLD functionality.

PIL

To install PIL, download and decompress the source. Then move into the root folder and run setup.py install
(remembering to use your virtualenv Python executable, if necessary):

1.2. Installation & Configuration 11

http://www.pythonware.com/products/pil/
http://www.ffmpeg.org/
http://code.google.com/p/foma/
http://tedlab.mit.edu/~dr/Tgrep2/
http://www.pythonware.com/products/pil/#pil117

OLD Documentation, Release 1.0a1

cd Imaging-1.1.7
python setup.py install

Note: I experienced difficulties installing PIL in this way such that jpeg functionality was not working. To correctly
install PIL, I did:

cd Imaging-1.1.7
~/env/bin/python setup.py build_ext -i
~/env/bin/python selftests.py
~/env/bin/python setup.py install

The OLD accepts .jpg, .png and .gif image file uploads. If you want to test whether the PIL install can resize all
of these formats, create a test file of each format and run something like the following. If successful, you will have
created a smaller version of each image:

>>> import Image
>>> im = Image.open('large_image.jpg')
>>> im.thumbnail((500, 500), Image.ANTIALIAS)
>>> im.save('small_image.jpg')

FFmpeg

FFmpeg is a command-line tool that can convert .wav files to the lossy formats .ogg and .mp3. It can be some-
what tricky to install FFmpeg properly and some installs will not support .mp3 creation by default. For Debian 6.0
(Squeeze), I can recommend this tutorial.

Once ffmpeg is installed, you can check whether .wav-to-.ogg and .wav-to-.mp3 conversion is working by ensuring
you have a file called old_test.wav in the current directory and issuing the following commands:

ffmpeg -i old_test.wav old_test.ogg
ffmpeg -i old_test.wav old_test.mp3

If successful, you will have created a .ogg and a .mp3 version of your .wav file.

1.2.8 Deploy

Deploying an OLD application means getting a domain name, serving the application on the world wide web and
setting up some admin scripts. There are many possible ways to achieve this. In my production systems I have
followed the approach of using Apache to proxy requests to Pylons as described in Chapter 21: Deployment of The
Pylons Book and have had success with that. I review that approach here.

Assuming Apache 2, mod_proxy and mod_proxy_http are installed, you first enable the latter two:

sudo a2enmod proxy
sudo a2enmod proxy_http

Then you create a config file such as the one below in /etc/apache2/sites-available/ or
in the equivalent location for your platform. I used the config file below for an OLD applica-
tion deployed for documenting the Okanagan language. The domain name is okaold.org. I saved
the file as /etc/apache2/sites-available/okaold.org and created the error logs directory, i.e.,
/home/old/log. The only configuration necessary for the OLD config file (i.e., the production.ini file
whose creation was detailed in Generate the config file) is to ensure that the host variable is set to localhost and
the port variable is set to 8081.

12 Chapter 1. Getting Started

http://www.e-rave.nl/installing-ffmpeg-on-debian-squeeze-and-newer
http://pylonsbook.com/en/1.1/deployment.html

OLD Documentation, Release 1.0a1

NameVirtualHost *
OKA - Okanagan
<VirtualHost *>

ServerName okaold.org
ServerAlias www.okaold.org

Logfiles
ErrorLog /home/old/log/error.log
CustomLog /home/old/log/access.log combined

Proxy
ProxyPreserveHost On
ProxyPass / http://localhost:8081/ retry=5
ProxyPassReverse / http://localhost:8081/
<Proxy *>

Order deny,allow
Allow from all

</Proxy>
</VirtualHost>

Now you can start serving the OLD application with Paster. In order to keep the server running after you exit the shell,
you must invoke paster serve in daemon mode, as follows:

paster serve --daemon production.ini start

Now disable the default Apache configuration, enable the virtual host config file just created (in this case
okaold.org) and restart Apache:

sudo a2dissite default
sudo a2ensite okaold.org
sudo /etc/init.d/apache2 restart

You might also want the paster serve script to log error messages, which you can do by specifying a file to log
to using the --log-file option. You can also use the --pid-file option to store the process ID of the running
server in a file so that other tools know which server is running:

paster serve --daemon --pid-file=/home/old/okaold.pid --log-file=/home/old/log/paster-okaold.log production.ini start

As well as specifying start, you can use a similar command with stop or restart to stop or restart the running
daemon, respectively.

The Pylons Book also explains how to Create init scripts and how to use crontab to restart a paster server that is
serving an OLD/Pylons application (should that) ever be necessary. See the referenced sections for details.

You may also wish to write admin scripts to monitor an OLD application to ensure that it is functioning properly and
to email you if not. I may include a guide for doing that at some future data.

Finally, it is a good idea to make regular backups of the database and the files and analysis directories of
your OLD application. In my production systems I have used MySQL database replication to create a mirror of my
production database on a second server in a different location. I then use the standard Unix utility rsync to create
live copies of the files and analysis directories on that same second server. A Python script is run periodically
on the second server to perform a mysqldump of the relevant databases. I will further document my backup setup at
a later date.

1.2.9 Developers

This section provides an overview of the OLD for developers. It covers (1) how to download the source and install the
dependencies, (2) the structure of the source, (3) how to write and compile the documentation to HTML and PDF, (4)

1.2. Installation & Configuration 13

http://pylonsbook.com/en/1.1/deployment.html#creating-init-scripts
http://www.howtoforge.com/mysql_database_replication

OLD Documentation, Release 1.0a1

the creation of Python version-specific virtual environments and (5) the building of OLD releases as eggs or archives.

For detailed documentation on developing a Pylons application, consult the excellent documentation for the Pylons
framework, i.e., The Pylons Book.

Download & depencency installation

This subsection details how to get the OLD source and install its dependencies. To download the most up-to-date
source code, make sure you have Git installed and run:

git clone git://github.com/jrwdunham/old.git

To install the dependencies, move to the newly created old directory and run:

python setup.py develop

Directory structure

The onlinelinguisticdatabase directory contains all of the files and directories that will be packaged into
the final distribution. Its subdirectories are config, controllers, lib, model, public, and tests. This
section gives an overview of the contents of these directories and the websetup.py file.

The websetup.py file controls how an OLD application is set up. That is, when paster setup-app
config_file.ini is run (or when nosetests is run), the contents of websetup.py determine what database
tables are created, what defaults are entered into them and what directories are created.

The config directory houses the deployment.ini_tmpl and routing.py files. The former is the template
used to generate the config file when something like paster make-config production.ini is run. The
routing.py module is where the mappings from URL paths to OLD controller actions are specified. When a new
controller is created or the interface to an existing controller needs to be changed, the routing.py file must be
edited.

The controllers directory holds a module for each OLD controller. For example, the
controllers/forms.py module defines a FormsController class; the methods of this class (the
controller’s actions) return values which determine the content of particular responses. The index method
(action) of the FormsController class, for example, returns a list of all form models in the database; since
config/routing.py maps GET /forms to FormsController.index, it is this list of forms that is
returned when GET /forms is requested.

The lib directory holds modules that define functionality used by multiple controllers. The utils.py module
defines a large number of widely-used functions, classes and data structures; these are made available in controllers
under the h namespace, e.g., the value of h.markupLanguages is the list of valid markup language string values,
as defined in utils.py. The auth.py script holds the decorators that control authentication and authorization.
The schemata.py module contains the validators that are applied against user input. The other modules in the lib
directory are mentioned in this document where appropriate; consult the docstrings for more information.

The model directory contains a module for each SQLAlchemy model used by the OLD. For example,
model/file.py houses the File class which defines the attributes of the file model and their implementation
as columns and relations in a relational database. The model/model.py is special; it defines the Model class
from which all of the other models inherit a number of methods. Note that in order to make a model available in the
onlinelinguisticdatabase.model namespace, it must be imported in model/__init__.py.

The public directory may contain static files, HTML, CSS and JavaScript. Since the client-side OLD application has
not yet been implemented, the public directory contains, at present, only the iso_639_3_languages_data
which stores the tab-delimited files containing the ISO-639-3 dataset.

14 Chapter 1. Getting Started

http://git-scm.com/

OLD Documentation, Release 1.0a1

The tests directory contains all of the test modules. When the nosetests command is run, it is the modules here
that define the tests. For example, tests/functional/test_forms.py defines a TestFormsController
class whose methods test the various actions (or functionalities) of the forms controller. For example, the
test_create method of the TestFormsController class simulates POST /forms requests and con-
firms that the system behaves as expected. When testing new funcionality, new tests should be defined in
tests/functional or existing tests should be supplemented. Note the _toggle_tests.py script which
does not define tests but provides an easy way to turn large numbers of them on or off. For example,
./onlinelinguisticdatabase/tests/functional/_toggle_tests.py on will turn all tests on
and ./onlinelinguisticdatabase/tests/functional/_toggle_tests.py off will turn them
all off. See its docstrings for further usage instructions. Finally, the tests directory also contains the
_requests_tests.py script which defines some simple tests (using the Requests module) which (as described in
the Serve section) can be run on a live OLD application to ensure that it is working correctly.

The websetup.py module defines the setup_app function that is called when the OLD is set up, i.e., when
paster setup-app config_file.ini is issued. The behaviour of the setup process is determined by the
name of the config file. If test.ini is the config file (as is the case when nosetests is run), then test-specific
setup will be performed, i.e., all database tables will be dropped and then re-created. Otherwise, only the tables that
do not already exist will be created.

Documentation

This section reviews the OLD documentation creation process. The OLD documentation (i.e., this document) is written
using Sphinx and the reStructuredText lightweight markup language. In order to edit and build the documentation,
Sphinx must be installed:

easy_install sphinx

The reStructuredText source files for the OLD documentation are the .rst-suffixed files in the docs directory. The
Sphinx documentation has a good overview of the reStructuredText syntax. Once the source files have been edited,
build the documentation HTML (in docs/_build/html) by moving to the docs directory and running:

sphinx-build -b html . ./_build/html

To generate a LaTeX version of the documentation in docs/_build/latex, run (from the docs directory):

sphinx-build -b latex . ./_build/latex

If pdflatex is installed 2, generate a PDF of the documentation by moving to docs/_build/latex and running:

pdflatex -interaction=nonstopmode OLD.tex

Virtualenv & Python distros

In order to test whether the OLD works on different Python versions or to build distributions for those versions, it is
necessary to create virtual environments for each such Python distribution.

The pythonbrew utility facilitates the building and installation of different Pythons in a user’s home directory. Install
pythonbrew using the instructions on its web site.

Now run pythonbrew install to install the desired Pythons. For example, to install Python 2.4.6, 2.5.6 and
2.7.3, run:

pythonbrew install 2.4.6
pythonbrew install 2.5.6
pythonbrew install 2.7.3

2 See this page for an overview of how to use the TeX command-line utilities.

1.2. Installation & Configuration 15

http://sphinx-doc.org/
http://sphinx-doc.org/contents.html
https://pypi.python.org/pypi/pythonbrew/
http://www.charlietanksley.net/philtex/basics-of-latex-from-the-command-line/

OLD Documentation, Release 1.0a1

Once complete, new Python executables should be installed in ~/.pythonbrew/pythons/Python-2.4.6,
~/.pythonbrew/pythons/Python-2.5.6, etc. For example, to launch the Python 2.5.6 interactive console,
run:

~/.pythonbrew/pythons/Python-2.5.6/bin/python

To create a virtual environment using one of these Pythons, run virtualenv with the -p option followed by the
path to the desired Python executable. It is also a good idea to choose a name for the virtual environment that makes
it easy to tell what version of Python it uses. For example:

virtualenv -p ~/.pythonbrew/pythons/Python-2.5.6/bin/python env-2.5.6

Make sure that the new virtual environment has the correct python:

~/env-2.5.6/bin/python --version

Note that the OLD works with Python 2.6 and 2.7 but not with 2.4 or 2.5. It has not been tested with Python 3.

Releases

This section explains how to build stable OLD releases and how to upload them to PyPI.

To build an egg or a source distribution of a stable release, run the following two commands, respectively:

python setup.py bdist_egg
python setup.py sdist

Each of these commands will create a new archive in the dist directory.

In order to build an OLD egg distribution and upload it to PyPI in one command, run the following command. (Note
that you will need the OLD’s PyPI password in order to be permitted to do this.)

python setup.py bdist_egg register upload

To create and upload the source distribution to PyPI (so that, e.g., Pip can be used to install the OLD), run:

python setup.py sdist register upload

16 Chapter 1. Getting Started

CHAPTER 2

Architecture

The architecture section provides details about the design of the OLD.

2.1 Introduction

An OLD web service consists of a data structure for storing the artifacts of linguistic fieldwork and analysis and a
read-write interface to that data structure.

A major design principle of the OLD is that as much work as possible should be delegated to the user-facing appli-
cations so that the OLD web service can focus on providing secure and responsive multi-user concurrent access to
a central data structure. In some cases, technological restrictions currently inherent to particular platforms (e.g., the
inability of browser-based JavaScript applications to call external programs) have required server-side implementation
of features that might otherwise be implemented client-side (e.g., morphological parsing, PDF creation using TeX).

The diagram below illustrates the core components of an OLD application.

17

OLD Documentation, Release 1.0a1

When an OLD web application receives HTTP requests, the Routes component decides which Pylons controller will
handle the request. This decision is based on the HTTP method of the request and the URL. Routes and the con-
trollers conspire to create a RESTful interface to the data structure qua a set of resources. That is, a POST request to
www.xyz-old.org/formswill be interpreted as a request to create a new form resource while the same URL with
a GET method will be interpreted as a request to read (i.e., retrieve) all of the form resources. The first request will be
routed to the create action (i.e., method) of the forms controller (i.e., class) while the second will be routed to the
index action of that same controller. The authentication, authorization, input validation, data processing, linguistic
analysis and database updates and queries are all handled by the controllers.

As illustrated in the diagram, the Routes and Controllers components can be conceptually grouped together as the
interface of an OLD web service. The Interface section details this interface.

SQLAlchemy provides an abstraction over the tables and relations of the underlying database. Tables, their columns
and the relations between them (i.e., the schema) are declared using Python data structures called models and interac-
tion with the database is accomplished entirely via these. This not only simplifies interaction with the database (from
the Python programmer’s point of view) but also makes it easier to use different RDBMSs (e.g., SQLite, MySQL)
with minimal changes to the application logic.

As illustrated in the diagram, the Models and RDBMS components can be conceptually grouped together as the data
structure of an OLD web service. The Data Structure section describes and argues for the utility of the data structure
of the OLD.

18 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

2.2 Interface

This section details the RESTful interface to the OLD data structure as well as resource search, authentication and
authorization, input validation and notable data processing functionality. That is, it explains what kind of effect one
can expect from requesting a particular URL (with a particular HTTP method and a particular JSON payload) of an
OLD web service.

2.2.1 RESTful API

The OLD exposes a RESTful interface to its data structure. In the context of the OLD, the term RESTful 1 refers to the
fact URLs are used consistently to refer to OLD resources and that HTTP methods dictate the action to be performed
on the resource. For example, URLs of the form /forms and /forms/id are always routed to the forms controller
which provides the interface for the form resources. If the HTTP method is GET and the URL is /forms, the system
will return all form resources; the same URL with a POST method will cause the system to create a new form resource
(using JSON data passed in the request body). The URL /forms/id with a PUT method will result in an update to
the form resource with id=id while a DELETE method on the same URL will cause that resource to be deleted.

This pattern is detailed in the following table.

HTTP Method URL Effect Parameters
GET /forms Read all forms optional GET params
GET /forms/id Read form with id=id
GET /forms/new Get data for creating a new form optional GET params
GET /forms/id/edit Get data for editing form with id=id optional GET params
DELETE /forms/id Delete form with id=id
POST /forms Create a new form JSON object
PUT /forms/id Update form with id=id JSON object

The benefit of this consistent interface is that, once you know what resources the OLD exposes, it is clear how to create
new ones, retrieve all or one in particular, update one or delete one. The resources of the OLD are listed in the table
below.

Resource (URL) SEARCH-able Read-only Additional actions
applicationsettings
collections Yes Yes
collectionbackups Yes Yes
elicitationmethods
files Yes Yes
forms Yes Yes
formbackups Yes Yes
formsearchs Yes
languages Yes Yes
orthographies
pages
phonologies
rememberedforms* Yes
sources Yes
speakers
syntacticcategories
tags
users

1 See this StackOverflow page for a discussion on what exactly REST means and read Fielding’s thesis for the source of the term.

2.2. Interface 19

http://stackoverflow.com/questions/671118/what-exactly-is-restful-programming
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

OLD Documentation, Release 1.0a1

As indicated by the “SEARCH-able” column in the above table, some OLD resources can be searched using a non-
standard 2 SEARCH method with the relevant URL. The table below uses the files resources to illustrate the search
interface. The details of the search feature (e.g., the format of JSON search parameters) are laid out in the Search
section.

Note: POST /resources/search is a synonym for SEARCH /resources; this is to allow for search requests
from clients that do not allow specification of non-standard HTTP methods.

HTTP Method URL Effect Parameters
SEARCH /files Search files JSON object
POST /files/search Search files JSON object
GET /files/new_search Get data for searching files

Requests to GET /resources/new_search return a JSON object which summarizes the data structure of the
relevant resource, thus facilitating query construction.

For the read-only resources (cf. the third column in the resources table), the only standard requests that are valid are
GET /resources and GET /resources/id. Since these read-only resources also happen to be searchable, the
search-related requests of the table above are valid for them as well.

The core OLD resources (i.e., forms, files and collections) deviate from the RESTful standard in having additional valid
URLs associated. For example, the forms resource has a remember action such that POST /forms/remember
will result in the system associating the forms referenced in the request body to the user making the request (i.e., the
user remembers those forms). Similarly, the files resource has a serve action such that GET /files/serve/id
will return the file data for the file with id=id. These additional actions are described in the subsections for the
relevant resources/controllers below.

Aside from those described above, the only additional valid URL/method combinations of an OLD web service have
to do with authentication and the login controller. These are detailed in the Authentication & authorization section.

All other requests to an OLD web service will result in a response with a sensible HTTP error code and a JSON
message in the response body that gives further information on the error.

GET /resources

Requests of the form GET /resources, e.g., GET /forms, return all resources of the type specified in the URL.
These requests are routed to the index action of the controller for the resource.

The order of the returned resources may be specified via “orderBy”-prefixed pa-
rameters in the URL query string. For example, a request such as GET
/forms?orderByModel=Form&orderByAttribute=id&orderByDirection=desc will return
all form resources sorted by id in descending order. These ordering parameters are processed in exactly the same way
as those passed as an array during resource search requests (see Ordering results).

It is also possible to request that the resources returned be paginated. This is accomplished by passing “page” and
“itemsPerPage” parameters in the URL query string. For example, GET /files?page=3&itemsPerPage=50
will return a JSON representation of files 101 through 150. Of course, ordering and pagination parameters may both
be supplied in a single request.

GET /resources/id

Requests of the form GET /resources/id, e.g., GET /collections/43, return a JSON object representation
of the resource with the specified id. These requests are routed to the show action of the controller for the resource.

2 The WebDAV standard includes a SEARCH method so this is not entirely without precedent.

20 Chapter 2. Architecture

http://www.webdav.org/specs/rfc5323.html

OLD Documentation, Release 1.0a1

GET /resources/new

Requests of the form GET /resources/new, e.g., GET /forms/new, return a JSON object containing all of
the data necessary to create new resources of the specified type. These requests are routed to the new action of the
controller for the relevant resource. For example, when creating a new form resource, it is helpful to know the set
of valid grammaticality values, elicitation method names, users, sources, etc. of the system. Therefore, a request to
GET /forms/new will return a JSON object of the form listed below, where the values of the attributes are arrays
containing the relevant data.

{
"grammaticalities": [...],
"elicitationMethods": [...],
"tags": [...],
"syntacticCategories": [...],
"speakers": [...],
"users": [...],
"sources": [...]

}

This is really just a convenience that saves the trouble of making multiple requests (e.g., to GET /tags, GET
/sources, etc.)

Parameters in the query string can be used to alter the content of the response so that only certain datasets are returned.
If the URL query string is not empty, then only the attributes of the response object that have non-empty parameters in
the query string will be returned. For example, the request GET /forms/new?sources=y&tags=ywill result in
a response object of the same form as above except that only the sources and tags attributes will have non-empty
arrays for values.

If the value of a parameter in the URL query string is a valid ISO 8601 datetime string of the form
YYYY-MM-DDTHH:MM:SS, then the value of the corresponding attribute in the response object will be non-
empty only so long as the input datetime does not match the most recent datetimeModified value of
the specified resources. This permits the requesting of only novel data. For example the request GET
/forms/new?sources=2013-02-22T23:28:43 will return nothing but source resources and even these only
if there are such that have been updated or created more recently than 2013-02-22T23:28:43.

Some resources have very simple data structures (e.g., tags) and, therefore, requests of the form GET
/resources/new on such resources will return an empty JSON object.

GET /resources/id/edit

Requests of the form GET /resources/id/edit return the resource with the specified id as well as all data
required to update that resource. These requests are routed to the edit action of the relevant controller. Such requests
can be thought of as a combination of GET /resources/id and GET /resources/new. The JSON object in
the response body is of the form

{"resourceName": {...}, "data": {...}}

where the value of the resourceName attribute is the same object as that returned by GET /resources/id
and the value of the data attribute is the same as that returned by GET /resources/new. Parameters supplied
in the URL query string have the same effect as those supplied to GET /resources/new requests (cf. GET
/resources/new).

DELETE /resources/id

Requests of the form DELETE /resources/id result in the resource with the specified id being deleted from
the database. Such requests are routed to the delete action of the relevant controller. The form and collection

2.2. Interface 21

http://en.wikipedia.org/wiki/ISO_8601

OLD Documentation, Release 1.0a1

resources are special in that they are first saved to a backup table before being deleted; thus these types of resources
can be restored after deletion. The response body of a successful deletion request is a JSON object representation
of the content of the resource. As mentioned above, only administrators and their enterers may delete form, file and
collection resources.

POST /resources

Requests of the form POST /resources result in the creation of a resource of the specified type using the data
supplied as a JSON object in the request body. These requests are routed to the create action of the relevant con-
troller. The input data are first validated (as detailed in Input validation). If successful, a JSON object representation
of the newly created resource is returned.

Note: All resources receive, upon successful POST and PUT requests, a value for a datetimeModified attribute
which is a Coordinated Universal Time (UTC) timestamp. For creation requests on form, file and collection resources,
the user who made the request is recorded in the enterer attribute of the resource.

PUT /resources/id

Requests of the form PUT /resources/id result in the updating of the resource of the specified type with the
specified id. The data used to update the resource are supplied as a JSON object in the request body. These requests
are routed to the update action of the relevant controller. As with the POST requests described above, the input data
are validated before the update can occur. If successful, a JSON object representation of the newly updated resource is
returned. Upon successful update, the previous versions of form and collection resources are saved to special backup
tables of the database (i.e., formbackup and collectionbackup.)

JSON

As a general rule, the OLD communicates via JSON. JSON is a widely-used standard for converting certain
data types and (nested) data structures to and from strings. Strings, numbers, arrays (lists) and associative ar-
rays (dictionaries) can all be serialized to a JSON string. For example, a Python dictionary, i.e., a set of
key/value pairs such as {’transcription’: ’dog’, ’translations’: [{’transcription’:
’chien’}]} when converted to JSON would be ’{"transcription": "dog", "translations":
[{"transcription": "chien"}]}’. In most cases, when an OLD web service requires user input, that
input is expected to be JSON in the request body 3.

2.2.2 Search

The OLD provides a powerful search interface to a subset of its resources: collections, collectionbackups, files, forms,
formbackups, formsearches, languages, rememberedforms and sources. This interface allows for an unlimited number
of filter expressions conjoined via boolean operators into a hierarchical structure of unbounded depth where each filter
expression references a resource attribute, a relation and a pattern.

In terms of implementation, search expressions are JSON objects that are mapped to SQLAlchemy query objects which
produce SQL queries. In relational database-speak, the OLD search interface permits multi-table queries while taking
care of the joins and subqueries automatically. The SQLAQueryBuilder class in lib/SQLAQueryBuilder.py
handles the conversion from JSON search expression objects 7 to SQLAlchemy query objects.

3 In contrast to POST, PUT and DELETE requests, HTTP GET requests are not, canonically, supposed to possess contentful request bodies;
therefore, when optional parameters are permissible on such requests, the OLD will expect GET parameters in the URL string.

7 Actually, the search actions of the relevant controllers convert the JSON string to a Python dictionary using the loads function of the
simplejson module.

22 Chapter 2. Architecture

http://www.json.org/

OLD Documentation, Release 1.0a1

Valid search requests (e.g., SEARCH /forms) must contain in the request body a JSON object represent-
ing the query. The query object has a ‘query’ attribute whose value is another object which has a manda-
tory ‘filter’ attribute and an optional ‘orderBy’ attribute. The values of request.body.query.filter and
request.body.query.orderBy are both arrays, the former representing the hierarchy of filter expressions con-
joined by boolean operators and the latter representing a simple SQL ORDER BY clause:

{
"query": {

"filter": [...],
"orderBy": [...]

}
}

Filter expression syntax

OLD query filters are sets of simple filter expressions configured into a hierarchical structure using negation, conjunc-
tion and disjunction. Their syntax is simple and can be described via the following context-free grammar.

filterExpression ::= simpleFilterExpression | complexFilterExpression
simpleFilterExpression ::= “[” modelName ”,” attributeName ”,” relationName ”,” pattern “]” |

“[” modelName ”,” attributeName ”,” attributeModelAttributeName ”,” relationName ”,” pattern “]”
complexFilterExpression ::= “[”, “not” ”,” filterExpression “]” |

“[”, “and” ”,” “[” filterExpression (”,” filterExpression)* “]” |
“[”, “or” ”,” “[” filterExpression (”,” filterExpression)* “]”

That is, a filterExpression is either (1) a simpleFilterExpression or (2) an array whose first element
is the string “not” and whose second element is another filterExpression or (3) an array whose first element is
one of the strings “and” or “or” and whose second element is an array of one or more filter expressions.

Simple filter expressions

In plain English, a simple filter expression is something like “the transcription contains the character ‘a”’. A
simpleFilterExpression is an array with four or five elements. If four, then the first is the name of an OLD
model, the second the name of a valid attribute of that model, the third a relation and the fourth a pattern or value.
Consider the simple filter expression below (where the forms resources are being searched, i.e., SEARCH /forms).

["Form", "transcription", "like", "%a%"]

This expression is mapped to the SQLAlchemy query object:

query(model.Form).filter(model.Form.transcription.like(u'%a%'))

which generates the SQL that follows.

SELECT * FROM form WHERE transcription LIKE '%a%';

A request to SEARCH /forms with this simpleFilterExpression in the request body would return all form
resources whose transcription attribute contains the character “a”.

When a simple filter expression has five elements, the second is assumed to be the name of a relational attribute, i.e.,
an attribute that references another model, while the third is an attribute of the referenced model. For example, the
Form model has an enterer attribute whose value is a User model and a User model has a firstName attribute.
Therefore, to find all form resources with enterers whose first name begins with “J” or “S”, we construct the simple
filter expression

2.2. Interface 23

OLD Documentation, Release 1.0a1

["Form", "enterer", "firstName", "regex", "^[JS]"]

which maps to the SQLAlchemy query object:

query(model.Form).filter(model.Form.enterer.has(User.firstName.op('regexp')(u'^[JS]')))

The two following simple filter expressions return all forms lacking enterers and all forms having them, respectively.

["Form", "enterer", "=", null]
["Form", "enterer", "!=", null]

Some relational attributes of OLD models reference collections, i.e., lists of zero or more models of a given type. For
example, OLD forms can be associated to one or more files, i.e., the Form model has a files attribute whose value
is a collection of File objects. Since File objects have id attributes, we can use the filter expression below to
retrieve all forms associated to files with one of the following ids: 1, 2, 33, 5.

["Form", "files", "id", "in", [1, 2, 33, 5]]

The four-element filter expression below returns the same result set as the five-element one one above. This is because
the OLD knows that the Form model is being queried and that the only relation between the Form and File models
is captured by the files attribute of the Form model. 5

["File", "id", "in", [1, 2, 33, 5]]

The two following simple filter expressions return all forms lacking files and all forms having one or more, respectively.

["Form", "files", "=", null]
["Form", "files", "!=", null]

Complex filter expressions

Complex filter expressions are built from simple filter expressions using “not”, “and” and “or”.

The following complex filter expression uses “not” to return all form resources that do not have “a” in their transcrip-
tions.

["not", ["Form", "transcription", "like", "%a%"]]

Conjoined and disjoined filter expressions are exemplified below.

['and', [['Form', 'transcription', 'like', '%a%'],
['Form', 'elicitor', 'id', '=', 13]]]

['or', [['Form', 'transcription', 'like', '%a%'],
['Form', 'dateElicited', '<', '2012-01-01']]]

Finally, an example of a complex filter expression involving multiple levels of embedding.

['and', [['Translation', 'transcription', 'like', '%1%'],
['not', ['Form', 'morphemeBreak', 'regex', '[28][5-7]']],
['or', [['Form', 'datetimeModified', '<', '2012-03-01T00:00:00'],

['Form', 'datetimeModified', '>', '2012-01-01T00:00:00']]]]]

5 Note that while the results returned will be the same, the SQLAlchemy query object constructed and the SQL issued
to the database will be distinct. That is, the filter expression ["Form", "files", "id", "in", [1, 2, 33, 5]]
maps to the SQLAlchemy query query(model.Form).filter(model.Form.files.any(model.File.id.in_([1,
2, 33, 5]))) while ["File", "id", "in", [1, 2, 33, 5]] maps to fileAlias = aliased(File) and
Session.query(Form).filter(fileAlias.id.in_([1, 2, 33, 5])).outerjoin(fileAlias, Form.files).

24 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

Filter relations

OLD search requests permit the relations listed below.

• equality (“=” or “__eq__”)

• inequality (”!=” or “__ne__”)

• like (“like” 6)

• regular expression (“regex” or “regexp”)

• less than (“<” or “__lt__”)

• less than or equal to (“<=” or “__le__”)

• greater than (“>” or “__gt__”)

• greater than or equal to (“>=” or “__ge__”)

• one of (“in” or “in_”)

Note: Some relations can be referenced by more than one name as indicated in the brackets.

Most of these relations should be self-explanatory. However, the like and regular expression relations merit further
discussion.

The like relation

The “like” relation is simply the SQL LIKE operator. The pattern following the “like” relation may contain the
wildcard characters “%” and “_”. The percent sign matches zero or more of any character while the underscore
matches exactly one instance of any character. These wildcards are illustrated via some typical use cases below.

Find all forms whose transcription contains “t”:

["Form", "transcription", "like", "%t%"]

Find all forms whose transcription begins with “T”:

["Form", "transcription", "like", "T%"]

Find all forms whose transcription ends with “t”:

["Form", "transcription", "like", "%t"]

Find all forms that contain “k”, followed by any single character, followed by “t”:

["Form", "transcription", "like", "%k_t%"]

Note: As indicated by the above examples, OLD filter expressions are case-sensitive.

6 Substring pattern match is effected via the SQL LIKE relation. TALK ABOUT WILDCARDS HERE

2.2. Interface 25

OLD Documentation, Release 1.0a1

The regexp relation

The “regexp” (a.k.a. “regex”) relation implements regular expression matching. 8 Regular expressions are tools for
specifying complex patterns on strings. As with the “like” relation described above, certain characters and construc-
tions in “regexp” search patterns have special meanings.

By default, regular expressions perform a substring match. That is, an OLD filter expression like the one that follows
will return all forms that contain the string “it” anywhere in the value of their transcription attribute.

["Form", "transcription", "regex", "it"]

We can refer to the beginning or end of the string using the anchors “^” and “$”. For example, the following two filter
expressions find all forms whose transcription begins with “T” or ends with “s”, respectively.

["Form", "transcription", "regex", "^T"]
["Form", "transcription", "regex", "s$"]

The period ”.” matches any character. For example, the OLD filter expression below will match all forms that have
“kat”, “kit”, “kst”, “kqt”, etc. in their transcription values.

["Form", "transcription", "regex", "k.t"]

It is also possible to specify a pattern that matches a limited set of characters using character classes, i.e., sequences of
characters enclosed in square brackets. For example, the following OLD filter expression will match all forms whose
transcription value contains “k”, followed by a vowel, followed by “t”. (Of course, unicode characters are permitted
as well so accented and IPA vowels could be specified here also.)

["Form", "transcription", "regex", "k[aeiou]t"]

If the caret character “^” is the first character in the character class, then the class matches any character except those
it contains. For example, the following OLD filter expression will match all forms whose transcriptions contain a “k”,
followed by anything but a “q” or another “k”, followed by a “t”.

["Form", "transcription", "regex", "k[^qk]t"]

The vertical bar “|” is the alternation metacharacter. It matches either the string to its left or the string to its right. For
example, the following OLD filter expression will return all forms containing a translation that contains either “the cat
ran” or “the dog ran”.

["Form", "translations", "transcription", "the (cat|dog) ran"]

Regular expressions also support quantification. That is, it is possible to specify that a pattern zero or one times (using
”?”), zero or more times (using “*”), one or more times (using “+”), exactly n times (using “{n}”), between n and m
times (using “{n,m}”) and n or more times (using “{n,}”).

For example, to find all forms whose transcription is a single word with one syllable whose nucleus is transcribed
using exactly two vowels, an OLD filter expression like the following might be appropriate.

["Form", "transcription", "regex", "^[ptkmns][aeiou]{2}[ptkmns]$"]

Quantifiers could also be used to filter resources by the length of one of their fields. For example, to find all forms
whose transcriptions contain at least five but no more than ten characters, one could use the following OLD filter
expression.

["Form", "transcription", "regex", "^.{5,10}$"]

8 With MySQL as RDBMS, the “regexp” relation is simply the standard MySQL REGEXP operator, i.e., an implementation of POSIX extended
regular expressions. Since SQLite does not implement a REGEXP operator, the OLD supplies one using the standard re Python module. The table
on this page does a good job of detailing the difference between these two regular expression implementations.

26 Chapter 2. Architecture

http://www.regular-expressions.info/refflavors.html

OLD Documentation, Release 1.0a1

Note: Regular expressions will treat unicode combining characters as separate characters. Since the OLD applies
unicode canonical decomposition normalization 9 on all input, a string like “a” will be interpreted by the regular
expression parser as containing two strings, the “a” and the COMBINING ACCUTE ACCENT (u+0301) character.
Keep this in mind when using regular expression quantifiers to filter based on string length or when using character
sets. In the latter case, it is usually safer to use parentheses and the alternation metacharacter than character sets. To
illustrate, consider the two examples below. The first OLD filter expression will match “oao”, “oio” and “óo”, which
is probably not what was intended. The second filter expression will match “oao” and “oío”, which is probably what
was intended.

["Form", "transcription", "regex", "o[aí]o"]
["Form", "transcription", "regex", "o(a|í)o"]

Ordering results

In making a search request of an OLD web service, it is possible to specify the order in which the results are returned.
This is accomplished by specifying an orderBy attribute for the JSON query object that is passed as input in the
body of the request. Remember that OLD search requests must contain an object of the following form (where the
orderBy attribute is optional).

{"query": {
"filter": [...] ,
"orderBy": [...]}}

The value of the orderBy attribute is an array containing exactly three strings where the first is the name of a
model/resource, the second the name of an attribute of the model and the third is a direction, i.e., “asc” or “desc”.
For example, the following JSON object passed in the body of a request to SEARCH /forms would return all forms
whose transcription begins with “p” ordered by id in descending order.

{"query": {
"filter": ["Form", "transcription", "regex", "^p"],
"orderBy": ["Form", "id", "desc"]}}

2.2.3 Non-standard API

This section describes the valid requests that are not covered by the standard RESTful and search interfaces docu-
mented in the previous sections. A subset of OLD resources possess such supplemental interfaces. This section is
organized by resource.

Forms

Form resources represent linguistic forms and are the core of an OLD web service. The non-standard interfaces of
form resources are described here.

GET /forms/history/id

Requests to GET /forms/history/id are routed to the history action of the forms controller. Such requests
return a JSON object representing the history, or previous versions, of the form with the specified id. The id parameter

9 Cf. http://unicode.org/reports/tr15/

2.2. Interface 27

http://unicode.org/reports/tr15/

OLD Documentation, Release 1.0a1

can be the integer id or the Universally Unique Identifier (UUID) of the form. 10 The JSON object returned is of the
form

{"form": { ... }, "previousVersions": [...]}

where the value of the “form” attribute is the JSON representation of the form while the value of “previousVersions”
is an array of objects representing the previous versions of the form. If the form has been deleted, the value of the
“form” attribute will be null and if the form has not been updated or deleted, the value of the “previousVersions”
attribute will be an empty array.

POST /forms/remember

Requests to POST /forms/remember are routed to the remember action of the forms controller and cause the
forms referenced in the request body to be appended to the rememberedForms collection of the user making the
request. The expected input is an object of the form

{"forms": [id1, id2, ...]}

where id1, id2, etc. are form integer ids.

PUT /forms/update_morpheme_references

Requests to PUT /forms/update_morpheme_references regenerates values for the
morphemeBreakIDs, morphemeGlossIDs, syntacticCategoryString and breakGlossCategory
attributes of all forms in the system. (See the Morphological processing and Form sections for details on these
attributes.) The response generated by this request contains a JSON array of ids corresponding to the forms that were
updated. Only administrators are authorized to make this request.

Warning: It should not be necessary to request the regeneration of morpheme refer-
ences via this request since this should already be accomplished automatically by the call to
updateFormsContainingThisFormAsMorpheme on all successful update and create requests on
form resources. This interface is, therefore, deprecated (read: use it with caution) and may be removed in future
versions of the OLD.

Files

OLD file resources are representations of binary files stored on a filesystem. From a linguist’s point of view, they
are the audio/video records of linguistic fieldwork, the images (or audio or video) used as stimuli, PDFs of relevant
papers or handouts, etc. – anything that is relevant to a piece or a collection of language data. Multiple file resources
can be associated to a given form or collection resource. Thus, for example, a form representing a sentence could
be associated to a large audio recording of an elicitation session, a smaller audio recording of just the sentence being
uttered, an image used to illustrate a context for a speaker, etc. See the File section for more details on files.

GET /files/serve/id

Requests to GET /files/serve/id return the file data of the file resource with the given id, assuming the au-
thenticated user is authorized to access that resource. If the file with the specified id is a subinterval-referencing file,

10 Since some RDBMSs reuse primary key integers when a record is deleted, it is not possible to associate forms and collections to their backups
via their integer id attributes. Therefore, both form and collection resources have UUID attributes and are associated to their backup objects via both
form_id/collection_id and UUID attributes. The safest way, therefore, to request all of the backups of a given form/collection, therefore is
to pass the UUID to the relevant history GET request.

28 Chapter 2. Architecture

http://en.wikipedia.org/wiki/Universally_unique_identifier

OLD Documentation, Release 1.0a1

the file data of the parent file is returned; if the file data are hosted externally, an explanatory error message is returned.
(See the File for an explanation of subinterval-referencing and externally hosted files.)

GET /files/serve_reduced/id

Requests to GET /files/serve_reduced/id return the file content of the reduced-size copy of the file which
was created by the OLD upon file creation. If there is no reduced-size copy of the file, the OLD returns an error
message. These requests handle subinterval-referencing and externally hosted files in the same way as described in
the above subsection.

Collections

Collections are documents that can reference forms and are useful for creating records of elicitation sessions or for
writing papers using data stored on an OLD application. See the Collection section for more details on collections.

GET /collections/history/id

Requests to GET /collections/history/id are routed to the history action of the collections con-
troller and return a JSON object representing the history, or previous versions, of the collection with the specified id.
The id parameter can be the integer id or the Universally Unique Identifier (UUID) of the collection. 10 The JSON
object returned is of the form

{"collection": { ... }, "previousVersions": [...]}

where the value of the “collection” attribute is the JSON representation of the collection while the value of “previ-
ousVersions” is an array of objects representing the previous versions of the collection. If the collection has been
deleted, the value of the collection attribute will be null and if the collection has not been updated or deleted,
the value of the previousVersions attribute will be an empty array.

Application settings

The application-wide settings for an OLD application are stored as application settings objects. These re-
sources have non-standard interfaces insofar as only administrators are permitted to create, update or delete
them. Other types of users can only read them, i.e., request GET /applicationsettings and GET
/applicationsettings/id. The application settings resources are also unique in that the most recently created
one (i.e., that with the largest id) is designated as the active application settings and is the one that affects the behaviour
of the rest of the application. Therefore, application-wide behaviour may be configured either by updating the active
application settings resource or by creating a new (and hence active) one. The latter approach is recommended since
the previously created application settings resources will provide a history of previous configurations.

Users

User resources represent the users (i.e., administrators, contributors and viewers) of an OLD application. The interface
to this resource is non-standard in that only administrators are authorized to create or delete user resources and a user
resource can only be updated by administrators and the holder of the user account. See the User section for more
details on users.

2.2. Interface 29

http://en.wikipedia.org/wiki/Universally_unique_identifier

OLD Documentation, Release 1.0a1

Remembered forms

Each OLD user has a rememberedForms attribute whose value is a collection of zero or more form resources that
the user has memorized. Since these collections can grow quite large, they are treated as a resources of their own and
are not affected by interactions with user resources. The interface to the remembered forms resources are non-standard
in that ...

GET /rememberedforms/id

Requests to GET /rememberedforms/id return the array of forms remembered by the user with the supplied id.
Such requests are routed to the show action of the rememberedforms controller. Ordering and pagination parame-
ters may be provided in the query string of this request in exactly the same way as with standard GET /resources
requests of conventional resources (cf. GET /resources).

UPDATE /rememberedforms/id

Requests to UPDATE /rememberedforms/id are routed to the update action and set the remembered forms of
the user with the supplied id to the set of forms referenced in the JSON array of form ids sent in the request body. This
type of request accomplishes creation, updating and deletion of a remembered form “resource”. Only administrators
and the user with the supplied id can make licit requests to UPDATE /rememberedforms/id. As with requests
to POST /forms/remember, requests to UPDATE /rememberedforms/id should contain a JSON request
body of the form {"forms": [16, 28, 385]}.

Note: The remember action of the forms controller has a similar, but more restricted, effect, i.e., requests to POST
/forms/remember can add forms to (but not delete them from) the remembered forms collection of the user who
makes the request.

SEARCH /rememberedforms/id

Requests to SEARCH /rememberedforms/id return all form resources remembered by the user with the sup-
plied id and which match the JSON search filter passed in the request body. These requests are routed to the
search action. Requests to POST /rememberedforms/id/search have the same effect as those to SEARCH
/rememberedforms/id.

Note: The same effect can be achieved by conjoining the filter expression ["Memorizer", "id", "=", id]
to an existing search on form resources, i.e., a request to SEARCH /forms.

2.2.4 Authentication & authorization

Speakers of endangered languages and their communities often require that the language data gathered by researchers
not be made available to the public at large. Therefore, authentication (i.e., a username and password) is required in
order to access data on an OLD web service 4.

In addition to authentication, the OLD possesses a role-based system of authorization. The three roles are administra-
tor, contributor and viewer.

4 Future versions of the OLD may make authentication a configurable option, thus allowing publicization of all data. Another possibility is that
the system could allow users to tag some data as public and that these data could be accessed without authentication. A final possibility would be to
publicize all data but allow some data to be encrypted such that only authenticated users could decrypt them.

30 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

Viewers are only able to perform read requests, e.g., view all form resources, retrieve a particular file resource, search
the collections resources, etc.

Contributors have read and write access to most resources, with some restrictions. Contributor U1 is not permitted
to delete a form, file or collection entered by contributor U2. Only administrators and U1 can delete a form, file
or collection entered by U1. In addition, only administrators and user U1 are permitted to update the user resource
representing U1.

Administrators have unrestricted access to read and write any resource. Only administrators can create or delete users
and only administrators have write access to application settings resources.

Separate from the role-based division of users is a classification into restricted and unrestricted users. While adminis-
trators are, by default, always unrestricted, the application settings can specify a subset of contributors and viewers as
unrestricted. Only unrestricted users are permitted to access restricted objects, i.e., forms, files or collections tagged
with the “restricted” tag. Users not classified as unrestricted (i.e., restricted users) are unable to access restricted ob-
jects in any way. Since core objects can be associated to one another (e.g., a form can be associated to multiple files),
restricted status can spread from object to object. For example, an unrestricted form becomes restricted as soon as it
is associated to a restricted file.

The login controller effects authentication. Its interface is detailed in the following table.

HTTP Method URL Effect Parameters
POST /login/authenticate Attempt to authenticate JSON object
GET /login/logout De-authenticate
POST /login/email_reset_password Email a newly generated password to the user JSON object

POST /login/authenticate attempts authentication using the provided input, i.e., a JSON object on the re-
quest body of the form {"username": " ... ", "password": " ... "}. If successful, authenti-
cated status is persisted across requests via a cookie-based session object where the value of session[’user’]
is the user model of the authenticated user.

A GET /login/logout request removes the ’user’ key from the session object associated with the cookie
passed in the request. That is, it de-authenticates, or logs out, the user.

A POST /login/email_reset_password request with a JSON object in the request body of the form
{"username": " ... "} attempts to create a new, randomly generated password for the user with the pro-
vided username and notify the user via email of the change. If the server is unable to send email, the password will
not be reset and a JSON error message will be returned in the response.

Note: If an SMTP mail server cannot be used, it is possible (as detailed in the comments of the config file that
is generated when paster make-config is run) to configure an OLD application to send email via a specified
Gmail account.

For more details on the authentication and authorization scheme of the OLD, please consult the API doc-
umentation and/or the source code. Most relevant are the lib/auth.py, controllers/login.py,
controllers/forms.py, controllers/files.py and controllers/oldcollections.py mod-
ules.

2.2.5 Input validation

When users attempt to create a new resource or update an existing one, the OLD attempts to validate the input. If val-
idation fails, the status code of the response is set to 400 and a JSON object explaining the issue(s) is returned, i.e., an
object of the form {’error’: ’error message’} or {’errors’: {’field name 1’: ’error
message 1’, ’field name 2’: ’error message 2’}}.

2.2. Interface 31

OLD Documentation, Release 1.0a1

Standard validation

Standard validation is validation on user input that is applied by all OLD applications in the same way.

Some representative examples will illustrate. All forms require some string in their transcription field and at least one
translation. References to other OLD resources via their ids are validated for existence; e.g., when an elicitor for a
form is specified via a user id, then validation ensures that the id corresponds to a user in the database. User-supplied
values for date fields must be in mm/dd/yyyy format. Emails must be correctly formatted. Files uploaded must be
one of the allowed file types (e.g., .jpg, .wav) of the OLD.

The Pylons controller classes that control the creation and updating of resources ensure that all such validation is passed
before these requests can succeed. The validators that encode these validations are written using the FormEncode
library and can be found in the lib/schemata.py module of the OLD source. For further information on input
validation, consult the Data Structure section, the API documentation and/or the source code.

Object language validation

In addition to the standard validation described above, particular OLD applications can control how, or whether,
transcriptions of the object language are validated. The relevant form attributes are transcription,
phoneticTranscription, narrowPhoneticTranscription and morphemeBreak. By configuring the
OLD application’s settings, adminstrators can control what types of strings are permitted in these fields. This is useful
for when groups of researchers want to ensure that, say, all morpheme segmentation strings (i.e., morphemeBreak
values) are restricted to sequences of phonemes from the specified inventory plus the specified morpheme delimiters.

The table below shows how object language transcription validation is configured.

Form attribute Relevant inventory or orthography Validation parameter
transcription storageOrthography orthographicValidation
phoneticTranscription broadPhoneticInventory broadPhoneticValidation
narrowPhoneticTranscription narrowPhoneticInventory narrowPhoneticValidation
morphemeBreak phonemicInventory* morphemeBreakValidation

The validation parameter column lists the attributes of the application settings resource that control whether the form
attribute in the first column should be validated against the relevant inventory or orthography. Each of the attributes
in the validation parameter column can have one of three possible values: None, Warning or Error. Only if the
attribute is set to Error will inventory/orthography-based validation occur.

For example, if the current application settings resource has orthographicValidation set to Error, then input
validation will ensure that form transcriptions contain only graphemes (i.e., characters or character sequences) from
the storage orthography plus punctuation characters and the space character.

When validation is enabled on the phonetic transcription fields, only graphs from the specified inventory plus the space
character are permitted (i.e., no punctuation).

The morphemeBreak attribute’s validation settings are slightly more complex since it is possible to choose
between the storage orthography or the phonemic inventory when configuring validation. This is done by set-
ting the morphemeBreakIsOrthographic attribute of the application settings resource to true in the for-
mer case and false in the latter. For example, if morphemeBreakIsOrthographic is set to false and
morphemeBreakValidation is set to Error, then input to the morphemeBreak field will be rejected if it
contains characters outside of the specified phonemic inventory, the specified morpheme delimiters and the space
character.

As implied in the above discussion, the application settings resource has morphemeDelimiters and
punctuation attributes for specifying sets of valid morpheme delimiters and punctuation, respectively.

Sometimes it is desirable to include foreign words in the object language transcriptions while still permitting validation
against inventories and orthographies on these fields. For example, in a system where morphemeBreak validation is
enabled and the phonemic inventory is /p/, /t/, /k/, /i/, /a/, /u/, it might be desirable to allow a morphemeBreak value

32 Chapter 2. Architecture

http://www.formencode.org

OLD Documentation, Release 1.0a1

of “ki dog katti” but prohibit “ki dog kotti”. The OLD permits this via the special “foreign word” tag on form resources.
When a form is tagged as a foreign word, its transcription values affect validation. So, if the system were to contain a
foreign word form with “dog” as its morphemeBreak value, then validation would correctly allow both instances of
“dog” in the above two examples while disallowing the latter example because of the illicit “o” in “kotti”. The function
updateApplicationSettingsIfFormIsForeignWord is called in the forms controller upon successful
create and update requests and is responsible for updating the validators with the foreign word information.

2.2.6 Processing

When requests cause resources to be created or updated, the OLD may perform some additional processing that may
affect the values of certain attributes of the target resource or even of other resources. The notable data processing
functionalities are listed below and are detailed in their own subsections.

• the generation of values for form attributes related to morphological analysis

• the updating of transcription validators when foreign words are entered

• the resolution and cacheing of collection-collection and collection-form cross-references

• the creation of reduced-size copies of the binary files of file resources

Morphological processing

Values for four attributes of form resources related to morphological analysis are generated on create and update
requests. These are the morphemeBreakIDs, morphemeGlossIDs, syntacticCategoryString and
breakGlossCategory attributes. The function compileMorphemicAnalysis in the forms controller is
responsible for generating these values.

The values of the morphemeBreakIDs and morphemeGlossIDs attributes are arrays that hold references to
other forms that match the morphemes indicated in the user-defined morphemeBreak and morphemeGloss at-
tributes. Each array has one array per word in the relevant field, each word array has one array per morpheme and
each morpheme array has one array per match found. Matches are ordered triples where the first element is the id
of the match, the second is the morphemeBreak or morphemeGloss value of the match and the third is the
syntacticCategory.name of the match or null if no category is specified. As illustration, consider a database
containing the following forms.

id transcription morphemeBreak morphemeGloss syntacticCategory.name
1 chien chien dog N
2 s s PL Agr
3 s s PL Num
4 le le the D
5 cour cour run V
6 ent ent 3.PL Agr
7 les chiens courent le-s chien-s cour-ent the-PL dog-PL run-3PL S

When the form with id 7 is entered, the system will generate the following arrays for the morphemeBreakIDs and
morphemeGlossIDs attributes.

morphemeBreakIDs = [
[

[[4, 'the', 'D']],
[[2, 'PL', 'Agr'], [3, 'PL', 'Num']]

],
[

[[1, 'dog', 'N']],
[[2, 'PL', 'Agr'], [3, 'PL', 'Num']]

],

2.2. Interface 33

OLD Documentation, Release 1.0a1

[
[[5, 'run', 'V']],
[[6, '3.PL', 'Agr']]

]
]
morphemeGlossIDs = [

[
[[4, 'le', 'D']],
[[2, 's', 'Agr'], [3, 's', 'Num']]

],
[

[[1, 'chien', 'N']],
[[2, 's', 'Agr'], [3, 's', 'Num']]

],
[

[[5, 'cour', 'V']],
[]

]
]

Note: The morphemeBreakIDs[0][1] value contains two match triples because the second morpheme of the
first word in the morphemeBreak line, i.e., “s”, matches two forms, i.e., the forms with ids 2 and 3. Similarly,
morphemeGlossIDs[0][1] contains two analogous match triples, the difference in this case being that the mor-
pheme’s phonemic/orthographic representation is listed and not its gloss. In contrast, the morpheme break “ent”
matches form 6, hence the single match triple in morphemeBreakIDs[2][1], whereas “3PL” matches nothing,
hence the absence of matches in morphemeGlossIDs[2][1].

The purpose of the morphemeBreakIDs and morphemeGlossIDs attributes is that they record the extent to
which the morphemic analysis of a given form is in accordance with the lexical items listed in the database. If
these values were not generated server-side upon create and update requests, then for any user-facing application to
display such information would require many requests and database queries each time a form were displayed. The
information in these two attributes is quite valuable in that it can be used to immediately inform users when the lexical
items implicit in their morphological analyses are not yet listed in the database or when small differences in, say,
glossing conventions are masking underlying consensus in analysis.

At the same time as the morphemeBreakIDs and morphemeGlossIDs values are generated, so too are the values
for the syntacticCategoryString and breakGlossCategory attributes. These values for our example
form 7 from above would be:

syntacticCategoryString = 'D-Agr N-Agr V-Agr'
breakGlossCategory = 'le|the|D-s|PL|Agr chien|dog|N-s|PL|Agr cour|run|V-ent|3PL|Agr'

The value of the syntacticCategoryString attribute is a string of syntactic category names corresponding to
the string of morphemes in the morphemic segmentation.[#f11]_ Since the syntactic category string can be used to
filter form resources on search requests, its generation facilitates search based on high-level morphological patterns.
For example, using the syntactic category string, one could use regular expressions to search for all forms consisting
of an NP followed by a VP.

Note: Given our example dataset, ’D-Num N-Num V-Agr’ is a reasonable (and perhaps preferable) syntactic
category string value. However, the system has no way of knowing this and therefore when there are two matches for
a morpheme (as there are for “s”) it arbitrarily chooses the syntactic category of the lexical form with the lowest id.

The value of breakGlossCategory is a string that unambiguously represents the morphemic analysis
of the form. Each morpheme is taken to be a triplet consisting of a phonemic representation (i.e., the

34 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

morphemeBreak value), a semantic representation (i.e., the morphemeGloss value) and a categorial value (i.e.,
the syntacticCategory.name value). These break-gloss-category triplets are delimited by the vertical bar “|”
and each such triplet is joined using the morpheme delimiters of the morphemeBreak value.

This attribute makes it possible to search for forms that contain a specific morpheme. Consider the case where one
wanted to find all forms containing the morpheme “s” glossed as “PL” of category “Num”. Performing a regular
expression search on the morphemeBreak line for the pattern -s(|-|$) (i.e., “-s” followed by a space, “-” or
the end of the string) would be insufficient since it might also find forms containing an “s” morpheme with a different
gloss. Conjoining the above regular expression filter with another on the morphemeGloss line with the pattern -PL(
|-|$) would still be insufficient since it would (contra what is desired) match a form with a morphemeBreak
value of “le-s oiseau-x” and a morphemeGloss value of “the-plrl bird-PL”. By searching the forms according to
those whose breakGlossCategory value matches the regular expression -s\|PL\|Num(|-|$), one can be
assured of finding all and only all the forms containing the morpheme “s”/”PL”/”Num”

Given the above discussion, it is evident that an update to an existing lexical form, the creation of a new one or the up-
dating of the name of a syntactic category may require updating the morphemeBreakIDs, morphemeGlossIDs,
syntacticCategoryString and/or breakGlossCategory values of a number of different forms. The OLD
accomplishes this by calling updateFormsContainingThisFormAsMorpheme whenever a form is created or
updated. This function first assesses whether the newly created/updated form is lexical and, if so, it selects all forms
whose morphological analyses implicitly reference the lexical form and updates the relevant fields appropriately. Care
is taken to reduce database select queries to an absolute minimum with the end result being that the majority of calls
to updateFormsContainingThisFormAsMorpheme will require only one select query, i.e., the one to find all
of the forms that reference the lexical item just created/updated. In addition, when the name of a (lexical) syntactic
category is changed, updateFormsContainingThisFormAsMorpheme is called on each form that has that
category.

Foreign words

Whenever a form is created, updated or deleted, the forms controller calls
updateApplicationSettingsIfFormIsForeignWord. This function is responsible for updating the
transcription validators of the application settings if the form is a foreign word. As described in Object language
validation, forms tagged with the “foreign word” tag will create exceptions to the user-defined object language
transcription validation. For example, if a form is entered with transcription, morphemeBreak and
morphemeGloss values of “John”, “John” and “John” and is tagged as a “foreign word”, then the system will allow
the string “John” to be included in the transcription field of other forms even if validation is set to reject forms
whose transcriptions contain, say, “J” or “h”.

Note: It is desirable to be able to enter such a lexical entry as “John” with a category of, say, “PN” since doing so will
result in sensible syntacticCategoryString values for forms containing “John” in their morphemeBreak
value.

Collection references

The contents attribute of collections is a string that may contain references to forms and other collections. These
references determine the value of the contentsUnpacked, html and forms attributes.

When the value of the contents attribute of an existing collection is updated, the update action calls
updateCollectionsThatReferenceThisCollection in order to update the contentsUnpacked,
html and forms values of all of the collections that reference the updated collection. This same function is called
when a collection is deleted; in this case, all references to the deleted collection are removed from any collections that
were referencing it and the appropriate values are updated. Similarly, when a form is deleted, the delete action calls
updateCollectionsReferencingThisForm and all references to the to-be-deleted form are removed from
any collections that reference it.

2.2. Interface 35

OLD Documentation, Release 1.0a1

See the Collection section for more details on collection references and the attributes whose values depend on them.

Lossy file copies

When new file models are created with locally stored file data, the OLD may create reduced-size copies of cer-
tain file types and store them, by default, in files/reduced_files/. Such lossy copies are created when
create_reduced_size_file_copies is set to a truthy value (e.g., “1”) in the config file and if the rele-
vant utilities are installed, i.e., for images the Python Imaging Library and for WAV files the FFmpeg command-line
utility. See the Soft dependencies and File sections for more details.

2.3 Data Structure

This page describes the data structure of the OLD. The OLD data structure is a representation of the artifacts of
linguistic fieldwork and their properties. This data structure is implemented as tables and their inter-relations in a
relational database. However, it is here presented using the language of model objects and their attributes, i.e., using
the conceptual structure of the object-relational mapping provided by SQLAlchemy.

The prototypical OLD model object is the form which represents a linguistic form, i.e., a morpheme, word,
phrase or sentence elicited by a linguistic fieldworker. Some of the representative attributes of the form model
are transcription, morphemeBreak, morphemeGloss, translations, grammaticality, speaker
and dateElicited.

This exposition is structured according to the models defined by the OLD.1 Each section begins with an overview
of the model. The attributes of the model are described and justified in alphabetically ordered subsections. Included
in these subsections are specifications of what constitutes a licit2 value for each attribute as well as the methods of
construction for system-generated values. Each model section details the format of the input expected upon create or
update requests as well as the format of the model when returned. Note that all of the attributes of the objects in the
input descriptions must be present. In general, unspecified values should be represented as empty strings or JSON
null. If the expected value is an array of ids of a given model, then unspecified is indicated by an empty array ([]).
For example, the JSON object used to create a form resource with no elicitor and no files associated would (with other
attributes omitted) look like {"elicitor": null, "files": []}.

The id and datetimeModified attributes are common to all models and are therefore described here in order to
avoid repetition. The former is the integer value created by the RDBMS each time a new row is created in a table. Each
model has an id value that is unique among all other models of that type. The larger the id value the more recently
added is the model. The datetimeModified attribute holds a datetime value. It is a UTC timestamp generated by
the application logic whenever a model is created or updated. Datetime values are returned by OLD web services as
strings in ISO 8601 format, e.g., “2010-01-29T09:33:27”.

A note on the terminology of resources, controllers, models and tables. There is a near 1-to-1-to-1-to-1 correspondence
between the resources exposed by an OLD application, the controllers that facilitate interaction with them, the models
that enode their structure and the RDBMS tables where their data are stored. For example, form resources are accessed
via the forms controller and the data for each form is represented internally as a formmodel object which is persisted
to a form table in the database. Some resources, such as the rememberedforms quasi-resource described in
Interface, have no corresponding model or table while some tables, e.g., the formtag table that stores the many-
to-many relations between the form and tag tables, have no model or controller. (Note that because of a naming
conflict, the controller responsible for OLD collections resources is in controllers/oldcollections.py not
controllers/collections.py.)

1 The models are defined in the model directory of the source code. Each model has its own appropriately named module where it is declared.
The form model, for example, is declared in model/form.py.

2 The code that validates user input is located in lib/schemata.py.

36 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

Note finally that the OLD treats all strings as unicode. Data input to the database or written to disk are UTF-8 encoded.
The OLD applies unicode canonical decomposition normalization 3 to all string data (including user input, search query
patterns and system-generated data). This means that the character “a” will be stored as “LATIN SMALL LETTER
A” (U+0061) followed by the combining character “COMBINING ACCUTE ACCENT” (U+0301) even when it is
entered as the canonically equivalent “LATIN SMALL LETTER A WITH ACUTE” (U+00E1). Such normalization
allows search and other functionality to work despite superficial differences in user input.

2.3.1 ApplicationSettings

An application settings model stores system-wide application settings. These settings affect such things as how input is
validated, what the morpheme delimiters are, what the valid grammaticality values are, what the name of the language
being studied is, etc.

Requests to create or update application settings resources must contain a JSON object of the following form.

{
"broadPhoneticInventory": "",
"broadPhoneticValidation": "",
"grammaticalities": "",
"inputOrthography": null, // integer id of a valid orthography model, or null or "" if unspecified
"metalanguageId": "",
"metalanguageInventory": "",
"metalanguageName": "",
"morphemeBreakIsOrthographic": "",
"morphemeBreakValidation": "",
"morphemeDelimiters": "",
"narrowPhoneticInventory": "",
"narrowPhoneticValidation": "",
"objectLanguageId": "",
"objectLanguageName": "",
"orthographicValidation": "",
"outputOrthography": null, // integer id of a valid orthography model, or null or "" if unspecified
"phonemicInventory": "",
"punctuation": "",
"storageOrthography": null, // integer id of a valid orthography model, or null or "" if unspecified
"unrestrictedUsers": [] // array of ids of valid user models, or [] if none are unrestricted

}

Application settings representations returned by the OLD are JSON objects of the following form.

{
"broadPhoneticInventory": "",
"broadPhoneticValidation": "",
"datetimeModified": "",
"grammaticalities": "",
"id": 1,
"inputOrthography": {}, // object representation of an orthography model
"metalanguageName": "",
"metalanguageId": "",
"metalanguageInventory": "",
"morphemeBreakIsOrthographic": "",
"morphemeBreakValidation": "",
"morphemeDelimiters": "",
"narrowPhoneticInventory": "",
"narrowPhoneticValidation": "",
"objectLanguageId": "",

3 Cf. http://unicode.org/reports/tr15/ and http://en.wikipedia.org/wiki/Unicode_equivalence.

2.3. Data Structure 37

http://unicode.org/reports/tr15/
http://en.wikipedia.org/wiki/Unicode_equivalence

OLD Documentation, Release 1.0a1

"objectLanguageName": "",
"orthographicValidation": "",
"outputOrthography": {}, // object representation of an orthography model
"phonemicInventory": "",
"punctuation": "",
"storageOrthography": {}, // object representation of an orthography model
"unrestrictedUsers": [] // array of objects representing user models

}

broadPhoneticInventory

The value of the broadPhoneticInventory attribute is a comma-delimited string representing the inventory of
graphemes (i.e., single characters or strings of characters) that should be used to construct broad phonetic transcrip-
tions, i.e., to construct values for the phoneticTranscription attribute of form models. The space character
should not be included as a grapheme since the validation functionality will allow it by default.

broadPhoneticValidation

The broadPhoneticValidation attribute determines how or whether the input to the
phoneticTranscription attribute of forms is validated. The permissible values of the
broadPhoneticValidation attribute, as defined in the validationValues tuple of lib/utils.py, are
“Error”, “Warning” and “None”. If the value is “Error”, then the OLD will not permit a form to be created or updated
if its phoneticTranscription value cannot be constructed using the graphemes in the broad phonetic inventory
plus the space character. See the Object language validation section for more details.

grammaticalities

The grammaticalities attribute holds a comma-delimited list of grammaticality values that will be the available
options for the grammaticality attributes of form models and the grammaticality attributes of translation
models. The default value for this field is “*,#,?” as defined in the generateDefaultApplicationSettings
function of lib/utils.py.

inputOrthography

The inputOrthography is a reference to an existing orthography model object. An orthography is essentially a
list of graphemes (like an inventory) but with some extra settings (cf. the Orthography section). The purpose of a
system-wide input orthography is to allow for the possibility that users will enter form transcriptions (and possibly
also morpheme segmentations) using one orthography (i.e., the input orthography) but that these transcriptions will
be translated into another orthography (i.e., the storage orthography) for storage in the database. When outputing the
forms, the system would then re-translate them from the storage orthography into the output orthography. Previous
OLD applications implemented this orthography conversion server-side. However, with the new architecture of the
OLD >= 1.0 this added complication seems best implemented client-side as user-specific orthography conversion.
Therefore, the inputOrthography attribute of the ApplicationSettings model may be removed in future
versions of the OLD.

metalanguageId

The value of the metalanguageId attribute is a three-character language Id from the ISO 639-3 standard
which unambiguously identifies the metalanguage of the application, i.e., the language used in the analysis
and documentation of the object language. The OLD language resources contain the ISO 639-3 data; that

38 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

is, requesting GET /languages (or SEARCH /languages, GET /applicationsettings/new or GET
/applicationsettings/edit/id) will return a JSON array containing all of the languages identified in the
ISO 639-3 standard. The default value for the metalanguageId attribute is “eng”.

metalanguageInventory

The value of the metalanguageInventory attribute is a comma-delimited string representing the inventory
of graphemes (i.e., single characters or strings of characters) that should be used to construct the translations in
the translations attribute of form models. Note that the OLD is not set up to use the inventory in the
metalanguageInventory attribute for validation.

metalanguageName

The value of the metalanguageName is the name of the language that is used in the analysis (and translation) of
the language under study (the object language). The default value for this attribute is “English”.

morphemeBreakIsOrthographic

The value of the morphemeBreakIsOrthographic attribute controls what characters the system will expect to
find in the values of the morphemeBreak attribute of forms. If morphemeBreakIsOrthographic is set to
“true” (or “yes”, “on” or “1”), then the system will expect the morphemeBreak value to be constructed using the
graphemes defined in the storageOrthography attribute; if it is set to “false” (or “no”, “off” or “0”), the system
will expect graphemes from the phonemicInventory in the value of this attribute.

morphemeBreakValidation

The morphemeBreakValidation attribute determines how or whether the input to the morphemeBreak at-
tribute of forms is validated. The permissible values of the morphemeBreakValidation attribute, as defined in
the validationValues tuple of lib/utils.py, are “Error”, “Warning” and “None”. If the value is “Error”,
then the OLD will not permit a form to be created or updated if its morphemeBreak value cannot be constructed
using the graphemes of the relevant orthography/inventory (cf. the morphemeBreakIsOrthographic attribute)
plus the space character. See the Object language validation section for more details.

morphemeDelimiters

The morphemeDelimiters attribute holds a comma-delimited list of characters that the system should ex-
pect users will employ when segmenting morpheme transcriptions or morpheme glosses in the morphemeBreak
and morphemeGloss fields, respectively. The default value for this attribute, as defined in the
generateDefaultApplicationSettings function of lib/utils.py, is “-,=”. If morpheme break val-
idation is enabled, then these delimiter characters will be permitted in the morphemeBreak values in addition to the
graphemes of the specified orthography/inventory. See the Object language validation section for more details.

narrowPhoneticInventory

The value of the narrowPhoneticInventory attribute is a comma-delimited string representing the inventory of
graphemes (i.e., single characters or strings of characters) that should be used to construct narrow phonetic transcrip-
tions, i.e., to construct values for the narrowPhoneticTranscription attribute of form models. The space
character should not be included as a grapheme since the validation functionality will allow it by default.

2.3. Data Structure 39

OLD Documentation, Release 1.0a1

narrowPhoneticValidation

The narrowPhoneticValidation attribute determines how or whether the input to the
narrowPhoneticTranscription attribute of forms is validated. The permissible values of the
narrowPhoneticValidation attribute, as defined in the validationValues tuple of lib/utils.py,
are “Error”, “Warning” and “None”. If the value is “Error”, then the OLD will not permit a form to be created or
updated if its narrowPhoneticTranscription value cannot be constructed using the graphemes in the narrow
phonetic inventory plus the space character. See the Object language validation section for more details.

objectLanguageId

The value of the objectLanguageId attribute is a three-character language Id from the ISO 639-3 standard which
unambiguously identifies the language being documented using the application, i.e., the object language. The OLD
language resources contain the ISO 639-3 data; that is, requesting GET /languages (or SEARCH /languages,
GET /applicationsettings/new or GET /applicationsettings/edit/id) will return a JSON ar-
ray containing all of the languages identified in the ISO 639-3 standard.

objectLanguageName

The value of the objectLanguageName is the name of the language that is being documented and analyzed using
the OLD web service.

orthographicValidation

The orthographicValidation attribute determines how or whether the input to the transcription attribute
of forms is validated. The permissible values of the orthographicValidation attribute, as defined in the
validationValues tuple of lib/utils.py, are “Error”, “Warning” and “None”. If the value is “Error”, then
the OLD will not permit a form to be created or updated if its transcription value cannot be constructed using the
graphemes in the storage orthography plus the space character and the specified punctuation. See the Object language
validation section for more details.

outputOrthography

The outputOrthography is a reference to an existing orthography model object. An orthography is essentially
a list of graphemes (like an inventory) but with some extra settings (cf. the Orthography section). The purpose of a
system-wide output orthography is to allow for the possibility that users will enter form transcriptions (and possibly
also morpheme segmentations) using one orthography (i.e., the input orthography) but that these transcriptions will
be translated into another orthography (i.e., the storage orthography) for storage in the database. When outputing the
forms, the system would then re-translate them from the storage orthography into the output orthography. Previous
OLD applications implemented this orthography conversion server-side. However, with the new architecture of the
OLD >= 1.0 this added complication seems best implemented client-side as user-specific orthography conversion.
Therefore, the outputOrthography attribute of the ApplicationSettings model may be removed in future
versions of the OLD.

phonemicInventory

The value of the phonemicInventory attribute is a comma-delimited string representing the inventory of
phonemes that should be used to construct morpheme segmentations in the morphemeBreak attribute of form
resources. See the Object language validation section for more details on configuring input validation for the
morphemeBreak attribute of forms.

40 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

punctuation

The punctuation attribute holds a string representing a list of punctuation characters. There is no delimiter: each
character in the string is considered a punctuation character. Thus the default value of .,;:!?’"‘’“”[]{}()-
results in the following characters being identified as valid punctuation: FULL STOP, COMMA, SEMICOLON,
COLON, EXCLAMATION MARK, QUESTION MARK, APOSTROPHE, QUOTATION MARK, LEFT SINGLE
QUOTATION MARK, RIGHT SINGLE QUOTATION MARK, LEFT DOUBLE QUOTATION MARK, RIGHT
DOUBLE QUOTATION MARK, LEFT SQUARE BRACKET, RIGHT SQUARE BRACKET, LEFT CURLY
BRACKET, RIGHT CURLY BRACKET, LEFT PARENTHESIS, RIGHT PARENTHESIS, HYPHEN-MINUS.
When orthographic validation is enabled, the system will allow the punctuation characters specified here to occur
in the values of the transcription attribute of forms.

storageOrthography

The storageOrthography is a reference to an existing orthography model object. An orthography is essentially
a list of graphemes (like an inventory) but with some extra settings (cf. the Orthography section). The storage
orthography defines the character sequences that should be used to create form transcription values. If the
morphemeBreakIsOrthographic attribute is set to “true”, then the form morphemeBreak values should
also be constructed out of the graphemes defined in the storageOrthography (plus the morpheme delimiters
specified in morphemeDelimiters). See the Object language validation section for details on how to configure
orthography/inventory-based validation for form transcription attributes.

The system-wide storage orthography is also a component in an orthography conversion feature. Orthography conver-
sion allows for the possibility that users will enter form transcriptions (and possibly also morpheme segmentations)
using one orthography (i.e., the input orthography) but that these transcriptions will be translated into another or-
thography (i.e., the storage orthography) for storage in the database. When outputing the forms, the system would
then re-translate them from the storage orthography into the output orthography. Previous OLD applications imple-
mented this orthography conversion server-side. However, with the new architecture of the OLD >= 1.0 this added
complication seems best implemented client-side as user-specific orthography conversion.

unrestrictedUsers

The unrestrictedUsers attribute is a collection of user models which identifies the set of users that are to be
identified as unrestricted. Such users are authorized to access restricted form, file and collection resources while con-
tributors and viewers who are not unrestricted (i.e., who are restricted) are unable to view (or, a fortiori, update) such
resources. See the Authentication & authorization section for more details on authorization based on the “restricted”
classification.

2.3.2 Collection

OLD collection models are documents that can contain both text (with markup) and references to form models in
their contents attribute. They can be used for a number of purposes: to create a simple list of forms, to write an
academic paper or a lesson plan, to document a conversation or narrative, etc. The value of the contents attribute is
a document written using one of the lightweight markup languages reStructuredText or Markdown. OLD collections
can embed other OLD collections via reference. As reStructuredText or MarkDown documents, they can be converted
to HTML and, in the case of collections written using reStructuredText, they can be converted to (Xe)LaTeX (whence
to PDF) and Open Document Format (i.e., .odt; whence to Word, i.e., .doc).

Collection creation and update requests must contain a JSON object of the following form.

{
"contents": "",
"dateElicited": "",

2.3. Data Structure 41

OLD Documentation, Release 1.0a1

"description": "",
"elicitor": null, // valid user model id or null
"files": [] // array of valid file model ids or []
"markupLanguage": "",
"source": null, // valid source model id or null
"speaker": null, // valid speaker model id or null
"tags": [], // array of valid tag model ids or []
"title": "My Collection",
"type": "",
"url": "",

}

Collection representations returned by the OLD are JSON objects of the following form.

{
"contents": "",
"contentsUnpacked": "",
"dateElicited": "",
"datetimeEntered": "",
"datetimeModified": "",
"description": "",
"elicitor": null, // an object representation of a user or null
"enterer": { ... }, // an object representation of a user
"files": [], // an array of object representations of files or []
"forms": [], // an array of object representations of forms or []
"html": "",
"id": 1,
"markupLanguage": "",
"source": null, // an object representation of a source or null
"speaker": null, // an object representation of a speaker or null
"tags": [], // an array of object representations of tags or []
"title": "",
"type": "",
"url": "",
"UUID": ""

}

contents

The value of the contents attribute is a string that constitutes the content of the collection. If markup is used, it
should be the markup specified in the markupLanguage attribute.

The value of this attribute can contain references to form models in the database. These references are strings like
form[136] or Form[136], i.e., the string “form” or “Form”, followed by a left bracket “[”, followed by a valid
form model id, followed by a right bracket “]”. The reference “form[136]” would result in the form with id 136 being
associated to the collection, i.e., collection.forms would contain that form.

Note that the value of the contents attribute need not contain any markup or other text. That is, it may simply be a
string consisting of references to forms.

Here is an example of a well-formed contents value that uses the MarkDown markup language and contains a
reference to the form with id 136:

Chapter 2
=========

Section containing a list

42 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

* Item 1

* Item 2

Section containing forms

form[136]

It is also possible to reference another collection within the value of the contents attribute. This causes the contents
of first collection to behave as though it contained the contents of the referenced collection in its contents value at the
point of reference. For example, consider collection C2 below which references collection C1 (with id 3) from above.

Chapter 1
=========

Section containing prose

Blah blah pied piping ... blah blah.

Section containing forms

form[135]

collection[3]

When collection C2 is created, the collections controller will generate the following value for
contentsUnpacked:

Chapter 1
=========

Section containing prose

Blah blah pied piping ... blah blah.

Section containing forms

form[135]

Chapter 2
=========

Section containing a list

* Item 1

* Item 2

Section containing forms

form[136]

The above contentsUnpacked value will be used to extract the form references of the collection and to generate

2.3. Data Structure 43

OLD Documentation, Release 1.0a1

the value of the html attribute. That is, collection C2 will be associated to forms 135 and 136. Note that collection-
collection references can be nested, i.e., collections can reference collections which reference other collections, etc.

contentsUnpacked

The value of the contentsUnpacked attribute is the value of the contents attribute when all of its collection
references are replaced with the contents of the collections referred to. These referred-to collections can refer to others
in turn and all such references are replaced by the appropriate contents values. The form models associated to a
collection are calculated by gathering all of the form references in the value of the contentsUnpacked attribute.

A result of collection-to-collection referencing is that the contents and forms values of a collec-
tion may be altered by updates to other collections. The forms controller handles this by calling
updateCollectionsThatReferenceThisCollection upon successful update requests.

dateElicited

The dateElicited attribute is a user-supplied date value which indicates the date when the collection was elicited.
The date must be in mm/dd/yyyy format. This is applicable to collections that represent records of events, e.g.,
elicitation sessions, recordings of stories, etc.

datetimeEntered

The value of the datetimeEntered attribute is a UTC timestamp generated by the system when a collection is
created. Note that this value is distinct from the datetimeModified attribute that is common to all model types
since that value is generated upon creation and update requests while the datetimeEntered value is only generated
upon creation requests and is not altered thereafter.

description

The value of the description attribute is a user-supplied string that describes the collection.

elicitor

The elicitor attribute references a valid user model who is the elicitor of the collection. This attribute may not be
appropriate for all collection types.

enterer

The enterer attribute references the user model whose account was used to create the collection. This value is
generated automatically by the system upon collection creation.

files

A collection may be associated to zero or more files via the files attribute which references a collection 6 of file
models. Files are OLD objects that represent a binary file (e.g., an audio, video or image file) along with metadata. An
example use case would be a collection that represents an elicitation session and which is associated to one or more

6 Note the distinction between OLD collections which are a type of model and collections in the ORM sense where the term refers to a type
of model attribute which references a set of zero or more other models. E.g., form.files is a collection of file models and is an example of a
collection in the second sense.

44 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

files whose file data are large audio recordings of the session. See the File section for details on the structure of file
models.

forms

A collection may be associated to zero or more forms. These are stored in the forms attribute, which references a
collection of form models. Whereas files are associated to an OLD collection by specifying an array of file ids in the
files attribute of the JSON object passed to collection create/update requests, forms are associated indirectly, that
is by being referenced in the value of the contents attribute of the collection (cf. the contents section).

html

The value of the html attribute is a string of HTML that is generated by the system using the value of the
contentsUnpacked attribute and the markup-to-HTML function corresponding to the markup language specified
in the markupLanguage attribute. Note that while the HTML could be generated in the user-facing application,
there is not, to my knowledge, a JavaScript implementation of the reStructuredText markup-to-HTML algorithm;
therefore the HTML generation is performed server-side. Note also that form references are left as-is, which is to say
that no HTML representation of the form data is generated. This is left as a task for the user-facing application since
applications will have their own method(s) of displaying forms.

markupLanguage

The value of the markupLanguage attribute is one of “Markdown” or “reStructuredText” as defined in the
markupLanguages variable of lib/utils.py. Markdown and reStructuredText are lightweight markup lan-
guages. A lightweight markup language is a markup language (i.e., a system for annotating a document) that is
designed to be easy to read in its raw form. If no value is specified, “reStructuredText” will be the default.

source

The source attribute references a valid source model that indicates the textual (or other) source of the collection.
This is useful for when the content of a collection is taken from another document and that fact needs to be attributed.
The structure of the source model is based on the BibTeX format. See the Source section for details.

speaker

The speaker attribute references a valid speaker model who is the speaker or consultant of the collection. As with
attributes like elicitor, the speaker attribute may not be appropriate for all collection types.

tags

A collection may be associated to zero or more tags and these associations are stored in the tags attribute. Tags are
user-defined models that can be used to arbitrarily categorize other OLD models. If a collection is to be restricted, the
special “restricted” tag should be associated to it. See the Tag section for details.

title

The value of the title attribute is a string that is the title of the collection. All collections must have a title and no
title may exceed 255 characters.

2.3. Data Structure 45

OLD Documentation, Release 1.0a1

type

The value of the type attribute is used to classify the collection and may affect how it is displayed or exported.
The permitted values, as defined in collectionTypes in lib/utils.py, are “story”, “elicitation”, “paper”,
“discourse” and “other”. If no value is specified, null is the default.

url

The value of the url attribute is not actually a valid URL but something more akin to the path component
of a URL. That is, it is a string composed of any of the 26 letters of the English alphabet (including upper-
case versions), the underscore “_”, the forward slash “/” and the hyphen “-”. The url value must not exceed
255 characters. At present the OLD qua web service does not make use of this attribute. However, it may be
used by a user-facing application to allow users to navigate to a specific collection using something more mean-
ingful than an integer id. For example, on a web application front-end to an OLD web service with the URL
http://www.xyz-old.org, one might navigate to a representation of the collection entitled “Magnum Opus” by
entering http://www.xyz-old.org/magnum_opus in the address bar (where “magnum_opus” is the value of
the url attribute.)

UUID

The value of the UUID attribute is a universally unique identifier (UUID), i.e., a number represented by 32 hex-
adecimal digits displayed in five groups using four hyphens. A valid UUID is a 36-character string that looks
like aba3ea8d-b56f-4934-a8f7-68cba500f411. The collections controller (i.e, oldcollections) ran-
domly generates a UUID value for each newly created collection model. These values are used to associate collection
backups to the collections they backup.

2.3.3 CollectionBackup

A collection backup model is created whenever a collection model is updated or deleted. These models cannot be
created directly, i.e., POST /collectionbackups is not a valid request. The collection backup model receives
all of the attributes of the model that it backs up. It also has some additional attributes, viz. collection_id and
backuper. The value of the collection_id attribute is the value of the id attribute of the collection that was
backed up to create the present collection backup model. The value of the backuper attribute is a JSON object
representing the user who created the backup (by deleting or updating the collection). In general, the values of the
relational attributes of the collection (i.e., the attributes that refer to other models) are converted to JSON object
representations in the collection backup model. For example, the value of the speaker attribute is such a JSON
object and the value of the files attribute is a JSON array of such objects representing file models. Since form
models have many attributes and since collection models will, typically, be associated to many form models, the
forms attribute of a collection backup model is simply a JSON array of form id values. If the collection has just
been deleted, then the value of the datetimeModified value of the collection backup will be the UTC datetime at
the time of deletion.

Collection backup representations returned by the OLD are JSON objects of the following form.

{
"backuper": { ... } // an object representation of a user
"collection_id": 1
"contents": "",
"contentsUnpacked": "",
"dateElicited": "",
"datetimeEntered": "",
"datetimeModified": "",
"description": "",

46 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

"elicitor": null, // an object representation of a user or null
"enterer": { ... }, // an object representation of a user
"files": [], // an array of object representations of files
"forms": [], // an array of object representations of forms
"html": "",
"id": 1,
"markupLanguage": "",
"source": null, // an object representation of a source or null
"speaker": null, // an object representation of a speaker or null
"tags": [], // an array of object representations of tags
"title": "",
"type": "",
"url": "",
"UUID": ""

}

2.3.4 ElicitationMethod

Elicitation method objects represent a set of tags for categorizing the way in which a form was elicited. For example,
sometimes a researcher asks a consultant “How do you say ‘Every man loves a woman.’?” An elicitation method used
to categorize forms elicited in this way might have a name value of “translated English”. Sometimes a researcher asks
a consultant “Does this sound like a good sentence: ‘Il y a une femme que tous les hommes aiment.’?” The elicitation
method for such forms might have a name of “judged object language utterance of researcher”.

Elicitation method creation and update requests must contain a JSON object of the following form.

{
"description": "",
"name": ""

}

Elicitation method representations returned by the OLD are JSON objects of the following form.

{
"datetimeModified": "",
"description": "",
"id": 1,
"name": ""

}

description

The value of the description attribute is a user-supplied string that describes the elicitation method and (perhaps)
provides guidance on its use.

name

The value of the name attribute is an obligatory, user-supplied string of no more than 255 characters which must be
unique among all other elicitation method names.

2.3.5 File

OLD file model objects are binary files with metadata. From the language researcher’s point of view, they are the
audio/video recordings of linguistic fieldwork as well as image, audio or video files that may be used to elicit speech

2.3. Data Structure 47

OLD Documentation, Release 1.0a1

or even the documents (such as PDFs of handouts or pedagogical materials) that are in some way related to language
data.

There are three types of file models and while each share a common core of metadata-related attributes, they have
attributes unique to their type as well. Local files are stored on the filesystem (by default, in the files/ directory) of
the machine serving an OLD applicaton. Subinterval-referencing files get their file content from a local audio/video
file (their parentFile) and have start and end attributes which reference start and end positions in the parent
file. Externally hosted files have content stored on another server and have url attributes for locating that content.
The form of the input passed with create requests will determine which type of file model is created. Whatever the
type of file being created, the URL and HTTP method for such requests remains the same, i.e., POST /files.

When creating a local OLD file, it is necessary to upload a binary file to the OLD.5 The traditional way of doing this
in web applications is to specify the Content-Type of the HTTP request as multipart/form-data and pass
the binary file data in the body of the request in a special format. When using this method, additional parameters are
restricted to simple name-value pairs – hierarchical JSON objects are not permitted. Therefore, when one is using
the multipart/form-data approach and when the file ought to be associated to multiple tag or form models,
the parameter names should make use of the following convention: <attribute_name>-<index>. That is, to associate
the tags with id values 2 and 36 to a file one is creating, the body of the request should contain a parameter named
“tags-0” with a value of “2” and another parameter named “tags-1” with a value of “36”. Similarly, associating a new
file to multiple forms using the multipart/form-data approach will require parameter names like “forms-0”,
“forms-1”, “forms-2”, etc. When using this approach, at least the following set of parameters must be included.

Parameter name Comments
filename required
dateElicited format mm/dd/yyyy
description possibly empty string describing the file
elicitor id of a valid elicitor model, or empty string
forms-0 id of a valid form model, or empty string
speaker id of a valid speaker model, or empty string
tags-0 id of a valid tag model, or empty string
utteranceType one of the allowed utterance types

The other way of creating a local OLD file is to set the Content-Type of the request to application/json
and send all input as a JSON object, as is done with all other creation and update requests to an OLD web service.
Under this approach, the binary file is converted to a string using Base64 encoding and that string is the value of the
base64EncodedFile attribute of the JSON object passed in the request body. Because it is inefficient to Base64-
encode large files on the client and then decode them in memory on the server, requests to POST /files with a
request body that is greater than 20MB 4 will be rejected with a 400 error code. File creation requests for local files
using the application/json content type must contain a JSON object of the following form.

{
"base64EncodedFile": ""
"dateElicited": "",
"description": "",
"elicitor": null, // valid user model id or null
"filename": "",
"forms": [], // array of valid form model ids or []
"speaker": null, // valid speaker model id or null
"tags": [], // array of valid tag model ids or []
"utteranceType": "",

}

Note that once a local file model has been created the value of its filename attribute cannot be changed, nor
can its file data. That is, requests to PUT /files should contain an object just like that presented above except

5 Note that updates to a local file model/resource cannot alter the binary data of the file model. That is, if the wrong file is uploaded, it is
necessary to delete the miscreated file and to create a new one with the correct file data.

4 Technically, such requests will be rejected if the length of the request body (as a Python unicode object) is greater than 20971520.

48 Chapter 2. Architecture

http://en.wikipedia.org/wiki/Base64

OLD Documentation, Release 1.0a1

that the base64EncodedFile and filename attributes ought to be removed as they will simply be ignored by
the controller handling the request. In contrast, when requesting an update to an externally hosted or subinterval-
referencing file, the input object may contain new values for all of the attributes permitted on create requests (see
below).

Requests to create subinterval-referencing files are identified by the presence of a parentFile attribute in the
request parameters. Creation requests for these types of files must contain a JSON object in the body of the request of
the following form.

{
"dateElicited": "",
"description": "",
"elicitor": null, // valid user model id or null
"end": 4.7, // integer or float representing the end of the interval in seconds
"filename": "",
"forms": [], // array of valid form model ids or []
"name": "",
"parentFile": 1, // valid id of a local OLD audio/video file
"speaker": null, // valid speaker model id or null
"start": 3.5, // integer or float representing the start of the interval in seconds
"tags": [], // array of valid tag model ids or []
"utteranceType": "",

}

Requests to create externally hosted files are identified by the presence of a url attribute in the request parameters.
Creation requests for these types of files must contain a JSON object in the body of the request of the following form.

{
"dateElicited": "",
"description": "",
"elicitor": null, // valid user model id or null
"filename": "",
"forms": [], // array of valid form model ids or []
"MIMEtype": "",
"name": "",
"parentFile": 1, // valid id of a local OLD file
"password": "",
"speaker": null, // valid speaker model id or null
"tags": [], // array of valid tag model ids or []
"url": "http://vimeo.com/13452",
"utteranceType": "",

}

File representations returned by the OLD are JSON objects of the following form.

{
"dateElicited": "",
"datetimeEntered": "",
"datetimeModified": "",
"description": "",
"elicitor": null, // integer id of a valid user model
"end": null, // number or null
"enterer": 1, // integer id of a valid user model
"filename": "",
"forms": [], // array of valid ids of form models
"id": 1,
"lossyFilename": "",
"MIMEtype": "",
"name": "",

2.3. Data Structure 49

OLD Documentation, Release 1.0a1

"parentFile": null, // integer id of a valid (audio/video) file model
"password": "",
"size": null, // integer representing the size of the file in bytes
"speaker": null, // integer id of a valid speaker model
"start": null, // number or null
"tags": [], // array of valid ids of tag models
"url": "",
"utteranceType": ""

}

dateElicited

The dateElicited attribute is a user-supplied date value which indicates the date when the file was elicited, if
applicable, e.g., when a recording of an elicitation was made. The date must be in mm/dd/yyyy format.

datetimeEntered

The value of the datetimeEntered attribute is a UTC timestamp generated by the system when a file is created.
Note that this value is distinct from the datetimeModified attribute that is common to all model types since that
value is generated upon creation and update requests while the datetimeEntered value is only generated upon
creation requests and is not altered thereafter.

description

The value of the description attribute is a user-supplied string that describes the file.

elicitor

The elicitor attribute references a valid user model who is the elicitor of the file, if applicable.

end

The value of the end attribute is a number (integer or float) representing the end of the subinterval in seconds of a
subinterval-referencing file. For example, consider the subinterval-referencing file F2 which references the audio file
F1 as its parent file. A value of 3.7 for the end attribute of F1 means that the content of F1 is a portion of the audio file
of F2 which ends at 3.7 seconds. Note that only subinterval-referencing files should have values for the end attribute.

enterer

The enterer attribute references the user model whose account was used to create the file. This value is generated
automatically by the system upon file creation.

filename

The filename attribute holds the name of the file as it is stored in the filesystem. When a local file is created, a non-
empty filename value must be provided in the input parameters. While unicode (i.e., non-ASCII) characters are
permitted in the filename value, the system removes certain characters (QUOTATION MARK (”), APOSTROPHE
(‘), the path separator (/ on Unix systems) and the null byte) and replaces spaces with underscores. If a file with
the resulting name already exists in the directory that holds local file data (the files/ directory by default), then

50 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

the system will alter the name (by inserting an underscore followed by a string of eight random characters between
the end of the file name and its extension) until a unique one is found. The resulting string becomes the value of
the filename attribute. So, for example, if a file create request contains “john’s file.wav” as the value of the
filename parameter and if files/johns_file.wav already exists, then the file data will be saved to something
like files/johns_file_3Df6Nop0.wav and the value of the filename attribute of the file model will be
“johns_file_3Df6Nop0.wav”.

forms

A file model may be associated to zero or more forms. On file create and update requests, associated forms are specified
by providing an array of valid form ids as the value of the forms attribute. When JSON object representations of file
models are returned, the value of the forms attribute is an array of JSON objects representing the associated forms.

lossyFilename

If the OLD is configured to create reduced-size copies of uploaded files and if the requisite dependencies are
installed (i.e., PIL or FFmpeg), then the system will create reduced-size (i.e., lossy) copies of the files in
files/reduced_files/ and the lossyFilename attribute will return the name of the reduced-size copy
in that directory. For example, if in the config file create_reduced_size_file_copies is set to “1” and
preferred_lossy_audio_format is set to “ogg” and if FFmpeg is installed, then a WAV file uploaded and
saved to files/my_file.wav will have a lossy copy in files/reduced_files/my_file.ogg and the
value of lossyFilename will be “my_file.ogg”.

MIMEtype

MIMEtypes, also known as Internet Media Types, are standardized strings used to categorize types of binary files.
An OLD web service will ascertain the MIMEtype of an uploaded file using the python-magic module and the con-
tents of the file. If the MIMEtype is in the list of allowed MIMEtypes (as defined in allowedFileTypes of
lib/utils.py), then the value of the MIMEtype attribute will be assigned to the ascertained MIMEtype string.
The valid MIME/Internet Media types are listed in the table below.

Internet media type Common extension(s) Name
application/pdf .pdf Portable Document Format
image/gif .gif GIF image
image/jpeg .jpg, jpeg JPEG JFIF image
image/png .png Portable Network Graphics
audio/mpeg .mp3 MP3 or other MPEG audio
audio/ogg .ogg Ogg Vorbis, Speex, Flac and other audio
audio/x-wav .wav, .wave WAV audio
video/mpeg .mpeg MPEG-1 video with multiplexed audio
video/mp4 .mp4 MP4 video
video/ogg .ogg, .ogv Ogg Theora or other video (with audio)
video/quicktime .mov, .qt QuickTime video
video/x-ms-wmv .wmv Windows Media Video

name

Externally hosted and subinterval-referencing files may supply a value for the name attribute. Since these types of files
do not have values for the filename attribute, the name attribute can be useful in identifying them. For local files
the system automatically sets the name attribute to the value of the filename attribute. If a subinterval-referencing

2.3. Data Structure 51

OLD Documentation, Release 1.0a1

file creation request does not include a non-empty name value, then the value assigned to that attribute is the value of
the filename attribute of the subinterval-referencing file’s parent file.

parentFile

Subinterval-referencing files are identified by possession of a non-empty parentFile attribute. The value of this
attribute is a reference to an existing local file. The parent file must be an audio or video file. The subinterval-
referencing file gets its file data from its parent file.

password

The password attribute can be specified for externally hosted file models that require a password in order for the
external host to serve the file. Note that this value will be available to all users of the system and should not therefore
be a password used for other purposes, e.g., to log in to the OLD web service itself.

size

Local file models have a value for the size attribute which is an integer representing the size of the binary file in
bytes. This is calculated upon a successful file creation request.

speaker

The speaker attribute references a valid speaker model who is the speaker or consultant of the file. This is appropri-
ate in cases where the file is, say, an audio recording of a speaker telling a story or a recording of an elicitation session
with a particular consultant.

start

The value of the start attribute is a number (integer or float) representing the beginning of the subinterval in seconds
of a subinterval-referencing file. For example, consider the subinterval-referencing file F2 which references the audio
file F1 as its parent file. A value of 2.1 for the start attribute of F1 means that the content of F1 is a portion of the
audio file of F2 begins at 2.1 seconds. Note that only subinterval-referencing files should have values for the start
attribute.

tags

A file may be associated to zero or more tags. Tags are user-defined models that can be used to arbitrarily categorize
other OLD models. If a file is to be restricted, then the special “restricted” tag should be associated to id. See the Tag
section for more details on the tag model.

url

Externally hosted files are identified by possession of a non-empty value for the url attribute. The value should be
a valid URL that will serve the content of the file when requested. This value will allow user-facing applications to
display (i.e., embed) the file content of externally hosted file models.

52 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

utteranceType

Files that represent recordings of utterances should be categorized using the utteranceType attribute. Valid values,
as defined in the utteranceTypes tuple of lib/utils.py are “None”, “Object Language Utterance”, “Meta-
language Utterance” and “Mixed Utterance”. If the value of this attribute on input is an empty string or null, then its
value will be null.

Here is a potential use case scenario for this attribute. Consider an OLD web service that is being used to study the
Blackfoot language and imagine a file model F1 whose binary data is a WAV file audio recording of a speaker saying
“oki”, which means “hello” in Blackfoot. Now imagine a second file, F2 whose binary data is another WAV file record-
ing of the speaker saying “hello”. Assume that the utteranceType value of F1 is “Object Language Utterance”
(since it is a recording of an utterance of the object language, i.e., Blackfoot) and assume that the utteranceType
value of F2 is “Metalanguage Utterance” (since it is a recording of an utterance in the language of analysis and trans-
lation, i.e., English). Now imagine a form F whose transcription is “oki” and whose only translation is “hello” and
which is associated to files F1 and F2. If there are a good number of forms like F, then an application making use of
this OLD web service would be able to reasonably assume that F1, being an object language utterance associated to F
is a recording of a speaker uttering the linguistic form that is transcribed in F. Such an application could then use such
forms to automatically generate audio/textual language learning games or talking dictionaries.

2.3.6 Form

An OLD form model represents a linguistic form in a very general sense; that is, it can represent a lexical item
abstracted from any elicitation or recording event as well as a word, phrase or sentence uttered on a particular occasion
by a particular speaker.

Form creation and update requests must contain a JSON object of the following form.

{
"comments": "",
"dateElicited": "" // string of the form mm/dd/yyyy
"elicitationMethod": null, // valid elicitation method model id or null
"elicitor": null, // valid user model id or null
"files": [], // array of valid file model ids or []
"translations": [{"transcription": "hello", "grammaticality": ""}],
"grammaticality": "",
"morphemeBreak": "",
"morphemeGloss": "",
"narrowPhoneticTranscription": "",
"phoneticTranscription": "",
"source": null, // valid source model id or null
"speaker": null, // valid speaker model id or null
"speakerComments": "",
"status": "",
"syntacticCategory": null, // valid syntactic category model id or null
"tags": [], // array of valid tag model ids or []
"transcription": "oki",
"verifier": null // valid user model id or null

}

Forms representations returned by the OLD are JSON objects of the following form.

{
"breakGlossCategory": "",
"comments": "",
"dateElicited": "",
"datetimeEntered": "", // system-generated ISO 8601-formatted datetime
"datetimeModified": "", // system-generated ISO 8601-formatted datetime

2.3. Data Structure 53

OLD Documentation, Release 1.0a1

"elicitationMethod": null, // an object representation of an elicitation method or null
"elicitor": null, // an object representation of a user or null
"enterer": { ... }, // an object representation of a user
"files": [], // an array of object representations of files or []
"translations": [{...}], // an array of object representations of translations
"grammaticality": "",
"id": 1, // the integer id assigned by the database
"morphemeBreak": "",
"morphemeBreakIDs": null, // an array or null
"morphemeGloss": "",
"morphemeGlossIDs": null, // an array or null
"narrowPhoneticTranscription": "",
"phoneticTranscription": "",
"source": null, // an object representation of a source or null
"speakerComments": "",
"speaker": null, // an object representation of a speaker or null
"status": "",
"syntacticCategory": null, // an object representation of a syntactic category or null
"syntacticCategoryString": "",
"tags": [], // an array of object representations of tags or []
"transcription": "bonjour",
"UUID": "1025b514-5781-4dce-8715-8c2590119546", // generated by the system
"verifier": null, // an object representation of a user or null

}

breakGlossCategory

The breakGlossCategory attribute stores a system-generated string which merges the values of the
morphemeBreak, morphemeGloss and syntacticCategoryString attributes. For example, the
breakGlossCategory value of a form with “chien-s” as its morpheme segmentation, “dog-PL” as its mor-
pheme gloss string and “N-Num” as its syntactic category would be “chien|dog|N-s|PL|Num”. Since the
breakGlossCategory value is searchable, it can be used to filter forms according to presence/absence of a spe-
cific morpheme. See the Morphological processing section for details on the structure of this value and its method of
generation.

collections

A form may be associated to zero or more collections. Collections are documents that typically reference, and are
associated to, multiple forms. Note that such associations are not created during form creation or updating but during
collection creation. See the Collection section for details.

comments

The comments attribute is an open-ended field that may contain any comments about the form or any data that do
not fit neatly into the standard attributes of the form resource. If multiple forms are to be tagged or classified in some
way, it is better to use the tags attribute for this purpose and not the comments attribute.

dateElicited

The dateElicited attribute is a user-supplied date value which indicates the date when the form was elicited. The
date must be in mm/dd/yyyy format. For abstract lexical forms this value may not be appropriate.

54 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

datetimeEntered

The value of the datetimeEntered attribute is a UTC timestamp generated by the system when a form is created.
Note that this value is distinct from the datetimeModified attribute that is common to all model types since that
value is generated upon creation and update requests while the datetimeEntered value is only generated upon
creation requests and is not altered thereafter.

elicitationMethod

The elicitationMethod attribute references a valid elicitation method model that classifies the way in which the
form was elicited. See the ElicitationMethod section for details.

elicitor

The elicitor attribute references a valid user model who is the elicitor of the form.

enterer

The enterer attribute references the user model whose account was used to enter the form. This value is generated
automatically by the system upon form creation.

files

A form may be associated to zero or more files via the files attribute which references a collection of file models.
Files are OLD objects that represent a binary file (e.g., an audio, video or image file) along with metadata (e.g., a
description or the size of the file). See the File section for details on the structure of file models. To associate a form
to files upon form create/update requests, pass an array of valid file ids as the value of the files attribute of the input
object. When a form is output by an OLD application, the value of the files attribute of the output object will be an
array containing JSON object representations of any associated file models.

translations

A form model must have at least one translation but may have more. The translations of a form are each translation
model objects that are listed in the translations attribute of the form. (In the relational database schema, the
form and translation tables are in a one-to-many relationship.) Forms with multiple translations, e.g., sentences
with multiple valid translations, should use separate translation models for each such translation. Translation models
can also have grammaticalities (cf. the grammaticality attribute) – this feature may be used to indicate a trans-
lation that is not appropriate to a grammatical form. Thus, as a simplistic example, “chien” may be translationed as
“dog” and “*wolf” using two translation models.

grammaticality

The grammaticality attribute stores the grammaticality value assigned to the form. This is a forced-choice
attribute whose options are defined by the users of the system in the grammaticalities attribute of the active
application settings resource. Usually, the available grammaticalities will be a list such as “*”, ”?”, “#”, “**”, etc.

2.3. Data Structure 55

OLD Documentation, Release 1.0a1

memorizers

The memorizers attribute holds a collection of zero or more user models corresponding to the users who have
memorized, or remembered, this form. See the section on the remembered forms resource (Remembered forms) for
details on how memorize a form.

morphemeBreak

The morphemeBreak attribute holds a representation of the morphological analysis of a linguistic form, i.e., a
morphemic segmentation. Maximum length is 255 characters. The system will expect words to be split by whitespace
and morphemes by the delimiters specified in the morphemeDelimiters attribute of the active application settings.
By specifying appropriate values for the morphemeBreakValidation, morphemeBreakIsOrthographic
and phonemicInventory or storageOrthography attributes of the active application settings resource, it
is possible to ensure that data input to this attribute are validated against the specified orthography/inventory and
delimiters.

morphemeBreakIDs

The value of the morphemeBreakIDs attribute is a system-generated JSON array that contains references to all
matches found for each morpheme listed in the morphemeBreak attribute. See the Morphological processing section
for details on the structure of this value and its method of generation.

morphemeGloss

The morphemeGloss attribute holds a string of morpheme glosses corresponding to the phonemic representations
stored in the morphemeBreak field. Maximum length is 255 characters. As with the morphemeBreak field, the
gloss “words” in this field should be delimited using whitespace and the glosses within words should be delimited
using the specified morpheme delimiters.

morphemeGlossIDs

The value of the morphemeGlossIDs attribute is a system-generated JSON array that contains references to all
matches found for each morpheme gloss listed in the morphemeGloss attribute. See the Morphological processing
section for details on the structure of this value and its method of generation.

narrowPhoneticTranscription

The narrowhoneticTranscription attribute holds a narrow phonetic transcription of the linguistic form. Max-
imum length is 255 characters. By specifying a value for the narrowPhoneticInventory attribute of the active
application settings and setting that same resource’s narrowPhoneticValidation attribute to “Error”, it is pos-
sible to configure narrowhoneticTranscription validation so that values not generable using the specified
inventory are rejected. See Object language validation.

phoneticTranscription

The phoneticTranscription attribute holds a phonetic transcription of the linguistic form. By conven-
tion, this is a broad phonetic transcription. Maximum length is 255 characters. By specifying a value for
the broadPhoneticInventory attribute of the active application settings and setting that same resource’s
broadPhoneticValidation attribute to “Error”, it is possible to configure phoneticTranscription val-
idation so that values not generable using the specified inventory are rejected. See Object language validation.

56 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

semantics

The value of the semantics attribute is canonically a semantic representation of the form, e.g., a denotation. Maxi-
mum length is 1023 characters. At some future point candidate values for this attribute may be auto-generated.

source

The source attribute references a valid source model that indicates the textual (or other) source of the form. This is
useful for when data are taken from papers or dictionaries and need to be attributed. The source model is based on the
BibTeX format. See the Source section for details.

speaker

The speaker attribute references a valid speaker model who is the speaker or consultant of the form.

speakerComments

The speakerComments attribute holds comments made about the form by the speaker or consultant.

status

The status attribute encodes the status of the form with respect to its verification. At present, the two licit values
are “tested” and “requires testing”. Usage of this attribute permits researchers to enter forms not yet tested in order to
prepare for a planned elicitation session.

syntacticCategory

The syntacticCategory attribute references a valid syntactic category model that categorizes the form. For
example, a form like “chien” might have a syntacticCategory value which references a syntactic category
model whose name attribute is “N”. See the SyntacticCategory section for details.

syntacticCategoryString

The syntacticCategoryString attribute holds a system-generated value which is a string of syntactic category
names corresponding to the morphemes specified by the creator/updater of the form. That is, the system inspects the
values of the morhemeBreak and morphemeGloss fields and searches the database for matches to the specified
morpheme/gloss pairs; the names of the syntactic categories of the matches are used to generate the value for the
syntacticCategoryString attribute. By searching forms based on patterns in this field it is possible to filter
the database according to higher-level morphological or syntactic patterns. See the Morphological processing section
for further details on how this value is generated.

syntax

The value of the syntax attribute is canonically a syntactic representation of the form, e.g., a phrase structure tree in
bracket notation. Maximum length is 1023 characters. At some future point candidate values for this attribute may be
auto-generated.

2.3. Data Structure 57

OLD Documentation, Release 1.0a1

tags

A form may be associated to zero or more tags. Tags are user-defined models that can be used to arbitrarily categorize
other OLD models. An example usage would be to define a tag model with a name value of “VP ellipsis” and use
that tag to categorize forms that exhibit the phenomenon. If a form is to be restricted, then the special “restricted” tag
should be associated to it; similarly, if the form documents a foreign word, then it should be associated to the special
“foreign word” tag. See the Tag section for more details on the tag model.

transcription

The transcription attribute holds transcriptions of linguistic forms. By convention, these are expected to be
written in an orthography of the object language. Maximum length is 255 characters. Every form must have a
transcription. It is possible to specify a storage orthography in the active application settings resource and configure
form transcription validation so that values not generable using the orthography are rejected. See Object language
validation for details.

UUID

The value of the UUID attribute is a universally unique identifier (UUID), i.e., a number represented by 32 hex-
adecimal digits displayed in five groups using four hyphens. A valid UUID is a 36-character string that looks like
aba3ea8d-b56f-4934-a8f7-68cba500f411. The forms controller randomly generates a UUID value for
each newly created form model. These values are used to associate form backups to the forms they backup.

verifier

The verifier attribute references a valid user model who has verified the form. This is useful, for example, in a
case where one researcher finds that a form they have elicited has already been stored in the database and they do not
want to record a duplicate entry. Oftentimes, however, it is desirable to enter a duplicate entry.

2.3.7 FormBackup

A form backup model is created whenever a form model is updated or deleted. These models cannot be created
directly, i.e., POST /formbackups is not a valid request. The form backup model receives all of the attributes of
the model that it backs up. It also has some additional attributes, viz. form_id and backuper. The value of the
form_id attribute is the value of the id attribute of the form that was backed up to create the present form backup
model. The value of the backuper attribute is a JSON object representing the user who created the backup (by
deleting or updating the form). In general, the values of the relational attributes of the form (i.e., the attributes that
refer to other models) are converted to JSON object representations in the form backup model. For example, the value
of the speaker attribute is such a JSON object and the value of the files attribute is a JSON array of such objects
representing file models. If the form has just been deleted, then the value of the datetimeModified value of the
form backup will be the UTC datetime at which the backup occurred.

Form backup representations returned by the OLD are JSON objects of the following form.

{
"backuper": null, // an object representation of an elicitation method or null
"breakGlossCategory": "",
"comments": "",
"dateElicited": "",
"datetimeEntered": "",
"datetimeModified": "",
"elicitationMethod": null, // an object representation of an elicitation method or null

58 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

"elicitor": null, // an object representation of an elicitation method or null
"enterer": null, // an object representation of an elicitation method or null
"files": [], // an array of objects representing file models or []
"form_id": 1,
"translations": [], // an array of objects representing translation models or []
"grammaticality": "",
"id": 1,
"morphemeBreak": "",
"morphemeBreakIDs": null, // an array or null
"morphemeGloss": "",
"morphemeGlossIDs": null, // an array or null
"narrowPhoneticTranscription": "",
"phoneticTranscription": "",
"source": null, // an object representation of an elicitation method or null
"speaker": null, // an object representation of an elicitation method or null
"speakerComments": "",
"syntacticCategory": null, // an object representation of an elicitation method or null
"syntacticCategoryString": ""
"tags": [], // an array of objects representing tag models or []
"transcription": "",
"UUID": "",
"verifier": null, // an object representation of an elicitation method or null

}

2.3.8 FormSearch

The form search model stores searches on form resources so that these searches can be saved for later use and shared
with other users of the system.

Requests to create or update application settings resources must contain a JSON object of the following form.

{
"description": u"",
"name": u"returns all transitive verbs", // obligatory string
"search": {...}, // an object representing an OLD form query

}

Form search representations returned by the OLD are JSON objects of the following form.

{
"datetimeModified": "",
"description": "",
"id": 1,
"name": "returns all transitive verbs",
"search": { ... }, // an object representing an OLD form query
"searcher": { ... } // object representation of a user model

}

description

The value of the description attribute is a user-supplied string that describes the search resource.

2.3. Data Structure 59

OLD Documentation, Release 1.0a1

name

The value of the name attribute is a user-supplied string used to identify the search resource. Names are obligatory,
may not exceed 255 characters and no two searches may have the same name.

search

The value of the search attribute is the JSON object representing the search. If the user-supplied search object is
not well-formed, the system will prevent the form search resource from being created or updated. The search object is
an object with an obligatory filter attribute and an optional orderBy attribute (see below). The values of both of
these attributes are arrays. The definitions of what constitutes well-formed “filter” and “orderBy” arrays are provided
in the Search section.

{
"filter": [...],
"orderBy": [...]

}

searcher

The searcher attribute references the user model whose account was used to create the form search. This value is
generated automatically by the system upon form search creation.

2.3.9 Translation

Translations are translations of forms into the metalanguage. A form model can have multiple translations and each
of these translations is a translation model. Each translation model has transcription and grammaticality
attributes. In relational database terminology, the form and translation tables are in a one-to-many relationship; that is,
a form may have many translations but each translation has one and only one form. When a form is deleted, so too are
its translations.

Translations are created not directly (i.e., there is no “translations” resource) but upon form create and update requests.
The input JSON object of such requests has a translations attribute whose value is an array of objects with
transcription and grammaticality attributes, e.g.,

{
"translations": [

{"transcription": "dog", "grammaticality": ""},
{"transcription": "wolf", "grammaticality": "*"}

]
}

2.3.10 Language

Each language model represents a language in the ISO 639-3 standard. These models are created in the database when
paster setup-app is run during the initial set up of the application. The data are taken from the tab-delimited text
file public/iso_639_3_languages_data/iso_639_3.tab. Existing language models cannot be updated
and new ones cannot be created. The purpose of this resource is to provide options for the metalanguage and object
language id and name attributes of application settings resources.

The language models are unique among OLD models in lacking an id attribute. Instead they have Id attributes whose
values are the unique three-character strings used to identify the language. The other attribute of note is the Ref_Name
attribute whose value is the reference name of the language. The standard makes it clear that no special importance

60 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

should be given to the reference name; OLD administrators are encouraged to use whatever language names seem most
appropriate, despite what the value of Ref_Name may be. However, care should be taken to attempt to identify the
correct Id value for the language being documented via an OLD web service so that this information is unambiguous.

For completeness, the attributes of language models are listed here: Id, Part2B, Part2T, Part1, Scope, Type,
Ref_Name, Comment, datetimeModified. See http://www-01.sil.org/iso639-3/download.asp for the semantics
of these attributes.

2.3.11 Orthography

An orthography model is a representation of the graphemes used in a particular writing system. The OLD makes use
of orthography models in order to effect input validation on the transcription and morphemeBreak attributes
of form models. Previous versions of the OLD implemented orthography conversion functionality server-side, thus
allowing users to enter transcriptions in one orthography and have it converted to a string in another (storage) orthog-
raphy. However, this functionality will now be the responsibility of any user-facing applications that make use of OLD
web services.

Requests to create or update orthography resources must contain a JSON object of the following form.

{
"initialGlottalStops": true
"lowercase": false,
"name": "Standard Orthography",
"orthography": "p, t, k, n, s, i, o, a",

}

Orthography representations returned by the OLD are JSON objects of the following form.

{
"datetimeModified": "",
"id": 1,
"initialGlottalStops": true,
"lowercase": false,
"name": "",
"orthography": ""

}

initialGlottalStops

The value of the initialGlottalStops is a boolean with True as the default. The user-supplied input may
be a truthy string (i.e., “true”, “on”, “yes” or “1”), JSON true, a falsey string (i.e., “false”, “off”, “no” or “0”) or
JSON false. This attribute encodes whether the orthography marks glottal stops at the beginning of words and can
be useful for orthography conversion algorithms.

lowercase

The value of the lowercase is a boolean with False as the default. The user-supplied input may be a truthy string
(i.e., “true”, “on”, “yes” or “1”), JSON true, a falsey string (i.e., “false”, “off”, “no” or “0”) or JSON false. This
attribute encodes whether the orthography uses only lowercase characters and can be useful for orthography conversion
algorithms and for reducing the number of graphemes that must be specified in the orthography attribute.

2.3. Data Structure 61

http://www-01.sil.org/iso639-3/download.asp

OLD Documentation, Release 1.0a1

name

The name attribute holds a name for the orthography. The name must be unique among orthography names and may
not exceed 255 characters. The name should facilitate identification of the orthography.

orthography

The value of the orthography attribute is a comma-delimited list of strings representing the graphemes of the
orthography. A non-empty value for this attribute is required.

Previous versions of the OLD drew significance from the ordering of the graphemes (i.e., for sorting & alphabetiza-
tion) and also encouraged bracketing of graphemes into equivalence classes for the purpose of sorting (i.e., “a” and
“a” would be sorted equivalently if the orthography contained ”..., [a, a], ...”). The OLD web service now leaves
orthography conversion to the user-facing applications; therefore, additional conventions for orthography specification
(such as the significance of ordering and equivalence bracketing) should be detailed in the documentation of those
applications.

As described in the Object language validation and ApplicationSettings sections, orthography models and, in particu-
lar, the values of their orthography attributes are used in input transcription validation.

2.3.12 Page

A page model can be used to allow users to create web pages using a specified markup language. Some of the attributes
(e.g., heading or name) may be removed or renamed in future versions of the OLD.

Requests to create or update page resources must contain a JSON object of the following form.

{
"content": u"",
"heading": u"",
"markupLanguage": u"",
"name": u""

}

Page representations returned by the OLD are JSON objects of the following form.

{
"content": "",
"datetimeModified": "",
"heading": "",
"html": "",
"id": 1,
"markupLanguage": "",
"name": ""

}

content

The content attribute holds a string representing the content of the page written in the specified markup language.

heading

The value of the heading attribute is a user-supplied string, no longer than 255 characters, which could be used as a
heading or title for the page.

62 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

html

The value of the html attribute is the HTML generated from the user-supplied content value using the markup-to-
HTML function corresponding to the specified markup language.

markupLanguage

The value of the markupLanguage attribute is one of “Markdown” or “reStructuredText” as defined in the
markupLanguages variable of lib/utils.py. Markdown and reStructuredText are lightweight markup lan-
guages. A lightweight markup language is a markup language (i.e., a system for annotating a document) that is
designed to be easy to read in its raw form. The system will expect the value of the content attribute to contain
markup in the specified markup language and will choose a markup-to-HTML function corresponding to that markup
language when generating the HTML of the page. If no value is specified, “reStructuredText” will be the default.

name

The value of the name attribute is a string used to identify the page. This value may not exceed 255 characters and a
non-empty value must be provided.

2.3.13 Phonology

OLD phonology models are representations of a phonology for the object language. That is, they spec-
ify the relationship between underlying representations (e.g., the value of the morphemeBreak attribute)
and surface representations (e.g., the value of the transcription, phoneticTranscription or
narrowPhoneticTranscription attributes) of form models.

The intention is to use the user-specified phonologies to compile finite-state transducer implementations of the
phonologies and to use these transducers in the construction of morphological parsers and in functionality that com-
pares surface strings and underlying strings and informs users of incompatibilities. At present this functionality is not
yet implemented in the OLD.

Requests to create or update phonology resources must contain a JSON object of the following form.

{
"description": "",
"name": "",
"script": ""

}

Phonology representations returned by the OLD are JSON objects of the following form.

{
"datetimeEntered": "",
"datetimeModified": "",
"description": "",
"enterer": { ... }, // object representation of a user
"id": 1,
"modifier": null, // object representation of a user or null
"name": "",
"script": "",

}

2.3. Data Structure 63

OLD Documentation, Release 1.0a1

datetimeEntered

The value of the datetimeEntered attribute is a UTC timestamp generated by the system when a phonology
is created. Note that this value is distinct from the datetimeModified attribute that is common to all model
types since that value is generated upon creation and update requests while the datetimeEntered value is only
generated upon creation requests and is not altered thereafter.

description

The value of the description attribute is an open-ended, user-supplied description of the phonology.

enterer

The enterer attribute references the user model whose account was used to create the phonology. This value is
generated automatically by the system upon phonology creation.

modifier

The modifier attribute references the user model whose account was used to perform the most recent update on the
phonology. This value is generated automatically by the system upon successfuly phonology update requests.

name

The value of the obligatory name attribute is a unique string, not to exceed 255 characters, that identifies the phonol-
ogy.

script

The script attribute holds a user-supplied string constituting the rules or specification of the phonology. The in-
tention is for the OLD to make use of the FST compiler package called Foma. When this is implemented, the OLD
will expect the script value to contain a valid Foma script and will attempt to compile it, returning an error on
create/update requests if the compile attempt fails.

2.3.14 Source

Sources are references to texts that can be cited in the source attribute of form and collection models. The source
schema is that of the BibTeX file format. The OLD validates input to source create and update requests in adherence to
the BibTeX format. That is, a source of a given type (i.e., a BibTeX entry type) must have values for all of the required
attributes of that type. For example, a source with a type value of “article” must have values for its author, title,
journal and year attributes.

OLD source models have attributes corresponding to all of the standard BibTeX field names as well as attributes
corresponding to some non-standard ones. The full list of source attributes is given below. In general, the source
attribute names match their BibTeX field name counterparts exactly. The exceptions to this are the key, keyField,
type and typeField attributes which correspond to BibTex key, “key” field name, entry type and “type” field
name, respectively. See the relevant subsections below for details.

Like all other OLD models, sources have id and datetimeModified attributes. Source models also have a file
attribute for referencing an OLD file model.

64 Chapter 2. Architecture

http://code.google.com/p/foma/
http://www.bibtex.org/Format/

OLD Documentation, Release 1.0a1

At some point, the OLD may specify a syntax for citing source models within the value of the contents attribute of
collection models.

Requests to create or update source resources must contain a JSON object of the following form. Source represen-
tations returned by the OLD are JSON objects of the same form, with the addition of id, datetimeModified
and crossrefSource attributes. The value of the crossrefSource attribute is either null (if no crossref
value was supplied by the user) or a JSON object representing the cross-referenced source.

{
"abstract": "",
"address": "",
"affiliation": "",
"annote": "",
"author": "",
"booktitle": "",
"chapter": "",
"contents": "",
"copyright": "",
"crossref": "",
"edition": "",
"editor": "",
"file": null, // valid file model id or null on input; object on output
"howpublished": "",
"institution": "",
"ISBN": "",
"ISSN": "",
"journal": "",
"key": "chomsky67",
"keyField": "",
"keywords": "",
"language": "",
"location": "",
"LCCN": "",
"month": "",
"mrnumber": "",
"note": "",
"number": "",
"organization": "",
"pages": "",
"price": "",
"publisher": "",
"school": "",
"series": "",
"size": "",
"title": "",
"type": "book",
"typeField": "",
"url": "",
"volume": "",
"year": ""

}

The descriptions of the BibTeX field names given in the subsections below are taken, with some modifications, from
Kopka.2004. The restrictions on lengths of attribute values are imposed (somewhat arbitrarily) by the OLD and are
not part of the BibTeX format.

2.3. Data Structure 65

OLD Documentation, Release 1.0a1

abstract

An abstract of the work. Maximum length is 1000 characters.

address

Usually the address of the publisher or other type of institution. For major publishing houses, it is recommended that
this information be omitted entirely. For small publishers, on the other hand, you can help the reader by giving the
complete address. Maximum length is 1000 characters.

affiliation

The author’s affiliation. Maximum length is 255 characters.

annote

An annotation. It is not used by the standard bibliography styles, but may be used by others that produce an annotated
bibliography.

author

The name(s) of the author(s), in the format described in Kopka.2004. There are two basic formats: (1) Given Names
Surname and (2) Surname, Given Names. For multiple authors, use the formats just specified and separated each such
formatted name by the word “and”. Maximum length is 255 characters.

booktitle

Title of a book, part of which is being cited. See Kopka.2004 for details on how to type titles. For book entries, use
the title field instead. Maximum length is 255 characters.

chapter

A chapter (or section or whatever) number. Maximum length is 255 characters.

contents

A table of contents. Maximum length is 255 characters.

copyright

Copyright information. Maximum length is 255 characters.

66 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

crossref

The key value of another source to be cross-referenced. Any attribute values that are missing from the source model
are inherited from the source cross-referenced via the crossref attribute. Maximum length is 1000 characters.

If a valid key value is supplied as the value of the crossref attribute, the system will use the attributes of the cross-
referenced source when validating the input. That is, a source whose type value is, for example, “inproceedings”
would normally fail validation if it lacks a value for its booktitle attribute; however, if it cross-references another
source whose type value is “proceedings” and which has a content-ful booktitle value, then it will pass validaton.
If a valid crossref value is passed on input, then, on output, the value of crossrefSource will be an object
representing the cross-referenced source.

crossrefSource

The value of the crossrefSource attribute is either null or the source model that is cross-referenced via the
crossref attribute. That is, a valid crossref value passed on input will cause the system to set the cross-
referenced source as the value of the crossrefSource attribute. When returning a JSON representation of the
original source, the value of the crossrefSource attribute will be a JSON object representing the cross-referenced
source.

edition

The edition of a book – for example, “Second”. This should be an ordinal, and should have the first letter capitalized,
as shown here; the standard styles convert to lower case when necessary. Maximum length is 255 characters.

editor

Name(s) of editor(s), typed as indicated in Kopka.2004. At its most basic, this means either as Given Names Sur-
name or Surname, Given Names and using “and” to separate multiple editor names. If there is also a value for the
author attribute, then the editor attribute gives the editor of the book or collection in which the reference appears.
Maximum length is 255 characters.

file

Source models may reference an OLD file model object via the file attribute, thus permitting the association to a
source of a document containing the source text itself. Note that the file attribute does not correspond to a standard
BibTeX field name.

howpublished

How something strange has been published. The first word should be capitalized. Maximum length is 255 characters.

institution

The sponsoring institution of a technical report. Maximum length is 255 characters.

ISBN

The International Standard Book Number. Maximum length is 20 characters.

2.3. Data Structure 67

OLD Documentation, Release 1.0a1

ISSN

The International Standard Serial Number. Used to identify a journal. Maximum length is 20 characters.

journal

A journal name. Abbreviations are provided for many journals. Maximum length is 255 characters.

key

The OLD source key field is the BibTeX key, i.e., the unique string used to unambiguously identify a source. Usually
some type of convention is established for creating key values, e.g., the first author’s last name in lowercase followed
by the year of publication: “chomsky57”. Maximum length is 1000 characters. All sources must have a valid key
value and this value must be unique among source key values. A valid key value is any combination of ASCII letters,
numerals and symbols (except the comma).

keyField

Used for alphabetizing, cross referencing, and creating a label when the author information is missing. This field
should not be confused with the source’s key attribute. Maximum length is 255 characters.

keywords

Key words used for searching or possibly for annotation. Maximum length is 255 characters.

language

The language the document is in. Maximum length is 255 characters.

location

A location associated with the entry, such as the city in which a conference took place. Maximum length is 255
characters.

LCCN

The Library of Congress Call Number. Maximum length is 20 characters.

month

The month in which the work was published or, for an unpublished work, in which it was written. Maximum length is
100 characters.

mrnumber

The Mathematical Reviews number. Maximum length is 25 characters.

68 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

note

Any additional information that can help the reader. The first word should be capitalized. Maximum length is 1000
characters.

number

The number of a journal, magazine, technical report, or of a work in a series. An issue of a journal or magazine is
usually identified by its volume and number; the organization that issues a technical report usually gives it a number;
and sometimes books are given numbers in a named series. Maximum length is 100 characters.

organization

The organization that sponsors a conference or that publishes a manual. Maximum length is 255 characters.

pages

One or more page numbers or range of numbers, such as 42–111 or 7,41,73–97 or 43+ (the “+” in this last example
indicates pages following that don’t form a simple range). Maximum length is 100 characters.

price

The price of the document. Maximum length is 100 characters.

publisher

The publisher’s name. Maximum length is 255 characters.

school

The name of the school where a thesis was written. Maximum length is 255 characters.

series

The name of a series or set of books. When citing an entire book, the title attribute gives its title and an optional
series attribute gives the name of a series or multi-volume set in which the book is published. Maximum length is
255 characters.

size

The physical dimensions of a work. Maximum length is 255 characters.

title

The work’s title, typed as explained in the Kopka.2004. Maximum length is 255 characters.

2.3. Data Structure 69

OLD Documentation, Release 1.0a1

type

The value of the OLD source type attribute is the BibTeX entry type, e.g., “article”, “book”, etc. The valid entry
types and their required fields are specified as the keys of the entryTypes dictionary in lib/bibtex.py. A valid
type value is obligatory for all source models. The chosen type value will determine which other attributes must
also possess non-empty values, cf. the table below.

type required attributes
article author, title, journal, year
book author or editor, title, publisher, year
booklet title
conference author, title, booktitle, year
inbook author or editor, title, chapter or pages, publisher, year
incollection author, title, booktitle, publisher, year
inproceedings author, title, booktitle, year
manual title
mastersthesis author, title, school, year
misc
phdthesis author, title, school, year
proceedings title, year
techreport author, title, institution, year
unpublished author, title, note

typeField

The type of a technical report—for example, “Research Note”. Maximum length is 255 characters.

url

The universal resource locator for online documents; this is not standard but supplied by more modern bibliography
styles. Maximum length is 1000 characters.

volume

The volume of a journal or multi-volume book. Maximum length is 100 characters.

year

The year of publication or, for an unpublished work, the year it was written. Generally it should consist of four
numerals, such as 1984.

2.3.15 Speaker

An OLD speaker model represents a speaker or consultant who is the source of a linguistic form or collection thereof
or who is the speaker on a recording.

Requests to create or update speaker resources must contain a JSON object of the following form.

70 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

{
"dialect": "",
"firstName": "John",
"lastName": "Doe",
"markupLanguage": ""
"pageContent": ""

}

Speaker representations returned by the OLD are JSON objects of the following form.

{
"datetimeModified": "",
"dialect": "",
"firstName": "",
"html": "",
"id": 1,
"lastName": "",
"markupLanguage": "",
"pageContent": ""

}

dialect

The value of the dialect attribute is a string denoting the dialect of the speaker. The value may not exceed 255
characters.

Note that for abstract lexical forms, where it does not make sense to specify a speaker, dialects can be specified via
tags – perhaps with a special syntax to facilitate search, e.g., “dialect:dialect_name”.

firstName

The firstName attribute holds the first name of the speaker. A value is obligatory and cannot exceed 255 characters.

html

The value of the html attribute is a string of HTML that is generated by the system using the value of the
pageContent attribute and the markup language specified in the markupLanguage attribute.

lastName

The lastName attribute holds the last name of the speaker. A value is obligatory and cannot exceed 255 characters.

markupLanguage

The value of the markupLanguage attribute is one of “Markdown” or “reStructuredText” as defined in the
markupLanguages variable of lib/utils.py. Markdown and reStructuredText are lightweight markup lan-
guages. A lightweight markup language is a markup language (i.e., a system for annotating a document) that is
designed to be easy to read in its raw form. This value determines which markup-to-HTML function is employed
when the system attempts to generate the html value from the user-supplied pageContent value. If no value is
specified, “reStructuredText” will be the default.

2.3. Data Structure 71

OLD Documentation, Release 1.0a1

pageContent

The value of the pageContent attribute is a string that can be used to construct a web page for the speaker. Future
versions of the OLD will probably include markupLanguage and html attributes so that speaker creators can
specify a markup language that the system can use to generate and cache the HTML.

2.3.16 SyntacticCategory

Syntactic category models are used to categorize form models into morphological or syntactic classes.

Requests to create or update syntactic category resources must contain a JSON object of the following form.

{
"description": "",
"name": "",
"type": ""

}

Syntactic category representations returned by the OLD are JSON objects of the following form.

{
"datetimeModified": "",
"description": "",
"id": "",
"name": "",
"type": ""

}

description

The value of the description attribute can be used to describe the category and/or clarify its intended usage.

name

The name attribute holds the name of the category. Example names might be “N”, “S”, “Agr”, “VP”, “V”’, “Noun”,
“Sentence”, “CP”, etc. A non-empty value for this attribute is obligatory, must be unique among other syntactic
category name values and may not exceed 255 characters.

type

Syntactic categories are themselves categorized via the type attribute. Valid values, as defined in the
syntacticCategoryTypes tuple of lib/utils.py are “lexical”, “phrasal” and “sentential”. An input value
of null or the empty string will result in null as value. The purpose of this attribute is to help the system to better
understand the categorization. This categorization could be useful for functionality that, say, seeks to induce a gram-
mar of the morphology of the language. The available syntactic category types may change in future versions of the
OLD.

2.3.17 Tag

Tags are general-purpose, user-defined models that can be associated to forms, files and collections. Any form, file or
collection may have zero or more tags associated to it. Example usage of a tag would be to create tags for linguistic
phenomena relevant to ones research; searches could then make reference to the presence or absence of this tag.

72 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

There are two special tags that are identified by their name values; these are the “restricted” and “foreign word”
tags. These tags cannot be deleted via the interface (and should not be forcefully deleted by administrators using the
RDBMS as this may have unintended consequences). The usage of the restricted and foreign word tags are described
in the Authentication & authorization and Object language validation sections, respectively.

Requests to create or update tag resources must contain a JSON object of the following form.

{
"description": "",
"name": ""

}

Tag representations returned by the OLD are JSON objects of the following form.

{
"datetimeModified": "",
"description": "",
"id": "",
"name": ""

}

description

The value of the description attribute can be used to describe the tag and/or clarify its intended usage.

name

The name attribute holds the name of the tag. Example names might be “VP ellipsis”, “double object” or “needs
verification”. A non-empty value for this attribute is obligatory, must be unique among other tag name values and
may not exceed 255 characters.

2.3.18 User

User models represent the authorized users of an OLD web service. Authenticating to an OLD web service means
supplying values for username and password attributes that match those of an existing user model. Only users
with a role value of “administrator” are authorized to create new users. An authenticated user is permitted to update
her own user model; however, only administrators can change the value of the username attribute.

Requests to create or update user resources must contain a JSON object of the following form. Note that on update,
setting the values of the username and password attributes to null will cause the system to leave those values
unchanged.

{
"affiliation": "",
"email": "",
"firstName": "",
"inputOrthography": null,
"lastName": "",
"markupLanguage": "",
"outputOrthography": null
"pageContent": "",
"password": "",
"password_confirm": "",
"role": "",
"username": "",

}

2.3. Data Structure 73

OLD Documentation, Release 1.0a1

User representations returned by the OLD are JSON objects of the following form. Note that the password attribute
is never present and that the username attribute is present only in the return value of DELETE, POST and PUT
requests.

{
"affiliation": "",
"datetimeModified": "",
"email": "",
"firstName": "",
"html": "",
"id": 1,
"inputOrthography": null, // object representation of an orthography model or null
"lastName": "",
"markupLanguage": "",
"outputOrthography": null, // object representation of an orthography model or null
"pageContent": "",
"role": "",
"username": ""

}

affiliation

The value of the affiliation attribute is a string representing the school or institution with which the user is
affiliated. A value here is optional. Maximum allowable length is 255 characters.

email

The email attribute holds the email address of the user. A valid email must be provided. Maximum allowable length
is 255 characters.

firstName

The value of the firstName attribute is the first name(s) of the user. A value here is obligatory. Maximum allowable
length is 255 characters.

html

The value of the html attribute is a string of HTML that is generated by the system using the value of the
pageContent attribute and the markup language specified in the markupLanguage attribute.

inputOrthography

The inputOrthography is a reference to an existing orthography model object. The purpose of a user-specific
input orthography is to allow for the possibility that users will enter form transcriptions (and possibly also morpheme
segmentations) using one orthography (i.e., their input orthography) but that these transcriptions will be translated
into another orthography (i.e., the system-wide storage orthography) for storage in the database. When outputing
the forms, the system would then re-translate them from the storage orthography into the user’s output orthography.
Previous OLD applications implemented this user-specific orthography conversion server-side. However, with the new
architecture of the OLD >= 1.0 this added complication seems best implemented client-side.

74 Chapter 2. Architecture

OLD Documentation, Release 1.0a1

lastName

The value of the lastName attribute is the last name of the user. A value here is obligatory. Maximum allowable
length is 255 characters.

markupLanguage

The value of the markupLanguage attribute is one of “Markdown” or “reStructuredText” as defined in the
markupLanguages variable of lib/utils.py. Markdown and reStructuredText are lightweight markup lan-
guages. A lightweight markup language is a markup language (i.e., a system for annotating a document) that is
designed to be easy to read in its raw form. This value determines which markup-to-HTML function is employed
when the system attempts to generate the html value from the user-supplied pageContent value. If no value is
specified, “reStructuredText” will be the default.

outputOrthography

The outputOrthography is a reference to an existing orthography model object. The purpose of a user-specific
input orthography is to allow for the possibility that users will enter form transcriptions (and possibly also morpheme
segmentations) using one orthography (i.e., their input orthography) but that these transcriptions will be translated
into another orthography (i.e., the system-wide storage orthography) for storage in the database. When outputing
the forms, the system would then re-translate them from the storage orthography into the user’s output orthography.
Previous OLD applications implemented this user-specific orthography conversion server-side. However, with the new
architecture of the OLD >= 1.0 this added complication seems best implemented client-side.

pageContent

The pageContent attribute holds a string representing the content of the user’s page. This content should be written
using the markup language specified in the markupLanguage attribute.

password

When creating a user, a valid value for the password attribute must be supplied. A valid password is composed of at
least eight characters but no more than 255. It must contain either at least one printable character not in the printable
ASCII range or one symbol, one digit, one uppercase letter and one lowercase letter. For example, “dave.Smith1” is a
valid password, as is “philippe.gagne”. (The latter contains a non-ASCII character.)

The users controller stores the password in the database encrypted using the PassLib module’s implementation of
the PBKDF2 key derivation function and the value of the salt attribute. During authentication attempts, the system
applies the same encryption to the supplied password values and authentication succeeds if the encrypted password
string from the request matches the encrypted password of the specified user. This means that even administrators of
the system are unable to view any user passwords in their unencrypted form.

When specifying a new password, the input object passed in the request must also contain a password_confirm
attribute whose value exactly matches that of the object’s password attribute.

rememberedForms

The value of the rememberedForms attribute is a collection of form models that the user has “remembered”. See
the Remembered forms section for details on how to modify the value of this attribute. Note that this attribute is not
included in the JSON object representation of user models. Retrieving a user’s remembered forms requires a separate
request to the rememberedforms resource.

2.3. Data Structure 75

OLD Documentation, Release 1.0a1

role

The role attribute is used to classify users and is the basis for the authorization functionality. Every user must have
a value for the role attribute. Valid values are “administrator”, “contributor” and “viewer”. Administrators have
unrestricted access to all requests on all resources, contributors have read and write access to almost all resources
and viewers have only read access. See the Authentication & authorization section for more details on roles and
authorization.

salt

A value for the salt attribute is generated by the system when a user is created. This value is a randomly generated
UUID. The salt aids in the secure encryption of the password.

username

The value of the username attribute is a string consisting of letters of the English alphabet, numbers and the under-
score. Each user must have a unique username value and no two usernames may be the same. Only an administrator
can update the username of a user model.

76 Chapter 2. Architecture

CHAPTER 3

API Documentation

This section contains the API documentation automatically extracted from the source code.

77

OLD Documentation, Release 1.0a1

78 Chapter 3. API Documentation

OLD Documentation, Release 1.0a1

3.1 onlinelinguisticdatabase

3.1.1 config

environment

middleware

routing

3.1.2 controllers

applicationsettings

collectionbackups

elicitationmethods

error

files

formbackups

forms

formsearches

languages

login

oldcollections

orthographies

pages

phonologies

rememberedforms

sources

speakers

syntacticcategories

tags

users

3.1.3 lib

SQLAQueryBuilder

If you can’t find the information you’re looking for, have a look at the index or try to find it using the search function:

3.1. onlinelinguisticdatabase 79

OLD Documentation, Release 1.0a1

• genindex

• modindex

• search

80 Chapter 3. API Documentation

Bibliography

[Kopka.2004] Kopka, Helmut and Daly, Patrick W. 2004. Guide to LATEX. Addison-Wesley Professional.

81

OLD Documentation, Release 1.0a1

82 Bibliography

Python Module Index

o
onlinelinguisticdatabase, 79
onlinelinguisticdatabase.config, 79
onlinelinguisticdatabase.controllers,

79

83

OLD Documentation, Release 1.0a1

84 Python Module Index

Index

O
onlinelinguisticdatabase (module), 79
onlinelinguisticdatabase.config (module), 79
onlinelinguisticdatabase.controllers (module), 79

85

	Getting Started
	About
	Installation & Configuration

	Architecture
	Introduction
	Interface
	Data Structure

	API Documentation
	onlinelinguisticdatabase

	Bibliography
	Python Module Index

